diamonds = sns.load_dataset("diamonds")
diamonds.head()
ideal_good = diamonds[(diamonds["cut"]=="Ideal") |
(diamonds["cut"]=="Good")]
ideal_good.groupby("cut")["price"].mean()
carat cut color clarity depth table price x y z
0 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43
1 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31
2 0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31
3 0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63
4 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75
cut
Ideal 3457.541970
Premium NaN
Very Good NaN
Good 3928.864452
Fair NaN
Name: price, dtype: float64
Why am I seeing Premium, Very Good and Fair even though I filtered them out? How do I remove those categories from the output?