I wrote a function to find the best combination of given dataframe features, f1 score, and auc score using LogisticRegression. The problem is that when I try to pass a list of dataframes combinations, using itertools combinations, LogisticRegression doesn't recognize each combination as its own X variable/ dataframe.
I'm starting with a dataframe of 10 feature columns and 10k rows. When I run the below code I get a "ValueError: X has 10 features, but LogisticRegression is expecting 1 features as input".
def find_best_combination(X, y):
#initialize variables
best_f1 = 0
best_auc = 0
best_variables = []
# get all possible combinations of variables
for i in range(1, X.shape[1]):
for combination in combinations(X.columns, i):
X_subset = X[list(combination)]
logreg = LogisticRegression()
logreg.fit(X_subset, y)
y_pred = logreg.predict(X_subset)
f1 = f1_score(y, y_pred)
auc = roc_auc_score(y, logreg.predict_proba(X)[:,1])
# evaluate performance on current combination of variables
if f1> best_f1 and auc > best_auc:
best_f1 = f1
best_auc = auc
best_variables = combination
return best_variables, best_f1, best_auc
and the error
C:\Users\katurner\Anaconda3\lib\site-packages\sklearn\base.py:493: FutureWarning: The feature names should match those that were passed during fit. Starting version 1.2, an error will be raised.
Feature names unseen at fit time:
- IBE1273_01_11.0
- IBE1273_01_6.0
- IBE7808
- IBE8439_2.0
- IBE8557_7.0
- ...
warnings.warn(message, FutureWarning)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
~\AppData\Local\Temp\2\ipykernel_15932\895415673.py in <module>
----> 1 best_combo = ml.find_best_combination(X,lg_y)
2 best_combo
~\Documents\Arcadia\modeling_library.py in find_best_combination(X, y)
176 # print(y_test)
177 f1 = f1_score(y, y_pred)
--> 178 auc = roc_auc_score(y, logreg.predict_proba(X)[:,1])
179 # evaluate performance on current combination of variables
180 if f1> best_f1 and auc > best_auc:
~\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py in predict_proba(self, X)
1309 )
1310 if ovr:
-> 1311 return super()._predict_proba_lr(X)
1312 else:
1313 decision = self.decision_function(X)
~\Anaconda3\lib\site-packages\sklearn\linear_model\_base.py in _predict_proba_lr(self, X)
459 multiclass is handled by normalizing that over all classes.
460 """
--> 461 prob = self.decision_function(X)
462 expit(prob, out=prob)
463 if prob.ndim == 1:
~\Anaconda3\lib\site-packages\sklearn\linear_model\_base.py in decision_function(self, X)
427 check_is_fitted(self)
428
--> 429 X = self._validate_data(X, accept_sparse="csr", reset=False)
430 scores = safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_
431 return scores.ravel() if scores.shape[1] == 1 else scores
~\Anaconda3\lib\site-packages\sklearn\base.py in _validate_data(self, X, y, reset, validate_separately, **check_params)
598
599 if not no_val_X and check_params.get("ensure_2d", True):
--> 600 self._check_n_features(X, reset=reset)
601
602 return out
~\Anaconda3\lib\site-packages\sklearn\base.py in _check_n_features(self, X, reset)
398
399 if n_features != self.n_features_in_:
--> 400 raise ValueError(
401 f"X has {n_features} features, but {self.__class__.__name__} "
402 f"is expecting {self.n_features_in_} features as input."
ValueError: X has 10 features, but LogisticRegression is expecting 1 features as input.
I'm xpecting the function to return a combination of best_variables, and accociated best_f1, best_auc.
I've also tried running the function using train, test, split. When I add train, test, split into the below code the function does run but returns "[], 0, 0" for best_variables, best_f1, best_auc.
def find_best_combination(X, y):
#initialize variables
best_f1 = 0
best_auc = 0
best_variables = []
# get all possible combinations of variables
for i in range(1, X.shape[1]):
for combination in combinations(X.columns, i):
X_subset = X[list(combination)]
X_train, X_test, y_train, y_test = train_test_split(X_subset, y, test_size=0.2, stratify=y, random_state=73)
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
y_pred = logreg.predict(X_test)
f1 = f1_score(y_test, y_pred)
auc = roc_auc_score(y_test, logreg.predict_proba(X_test)[:,1])
# evaluate performance on current combination of variables
if f1> best_f1 and auc > best_auc:
best_f1 = f1
best_auc = auc
best_variables = combination
return best_variables, best_f1, best_auc
I'm not sure what's going on under the hood of train, test, split that enables the function to iterate through and not error like before.
I hope this explains it enough. Thanks in advance for any help.