I have a heavily nested xml that I'm trying to convert to a data frame object.
attached failed attempts bellow.
input : johnny.xml file, contains the following text-
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE collection SYSTEM "BioC.dtd">
<collection>
<source/>
<date/>
<key/>
<document>
<id>2301222206</id>
<infon key="tt_curatable">no</infon>
<infon key="tt_version">1</infon>
<infon key="tt_round">1</infon>
<passage>
<offset>0</offset>
<text>Johnny likes pizza and chocolate, he lives in Italy with Emily.</text>
<annotation id="1">
<infon key="type">names</infon>
<infon key="identifier">first_name</infon>
<infon key="annotator">annotator_1</infon>
<infon key="updated_at">2023-01-22T22:12:56Z</infon>
<location offset="0" length="6"/>
<text>Johnny</text>
</annotation>
<annotation id="3">
<infon key="type">food</infon>
<infon key="identifier"></infon>
<infon key="annotator">annotator_2</infon>
<infon key="updated_at">2023-01-22T22:13:51Z</infon>
<location offset="13" length="19"/>
<text>pizza and chocolate</text>
</annotation>
<annotation id="4">
<infon key="type">location</infon>
<infon key="identifier">europe</infon>
<infon key="annotator">annotator_2</infon>
<infon key="updated_at">2023-01-22T22:14:05Z</infon>
<location offset="46" length="5"/>
<text>Italy</text>
</annotation>
<annotation id="2">
<infon key="type">names</infon>
<infon key="identifier">first_name</infon>
<infon key="annotator">annotator_1</infon>
<infon key="updated_at">2023-01-22T22:13:08Z</infon>
<location offset="57" length="5"/>
<text>Emily</text>
</annotation>
</passage>
</document>
</collection>
failed attempts:
- with lxml
from lxml import objectify
root = objectify.parse('johnny.xml').getroot()
data=[]
for i in range(len(root.getchildren())):
data.append([child.text for child in root.getchildren()[i].getchildren()])
df = pd.DataFrame(data)
result -
0 1 2 3 4
0 None None None None None
1 None None None None None
2 None None None None None
3 2301222206 no 1 1 None
- this solution using recursive function (2nd answer) result -
id infon-1 infon-2 infon-3 infon-key-1 infon-key-2 infon-key-3 passage-offset passage-text passage-annotation-id-1 ... passage-annotation-location-offset-3 passage-annotation-location-offset-4 passage-annotation-location-length-1 passage-annotation-location-length-2 passage-annotation-location-length-3 passage-annotation-location-length-4 passage-annotation-text-1 passage-annotation-text-2 passage-annotation-text-3 passage-annotation-text-4
0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
3 2301222206 no 1 1 tt_curatable tt_version tt_round 0 Johnny likes pizza and chocolate, he lives in Italy with Emily. 1 ... 46 57 6 19 5 5 Johnny pizza and chocolate Italy Emily
4 rows × 56 columns
- with same question, first answer using pandas_read_xml library
import pandas_read_xml as pdx
p2 = 'Johnny.xml'
df = pdx.read_xml(p2, ['collection'])
df = pdx.fully_flatten(df)
df
result generated 47 rows, again was not what I was looking for.
- also tried with beautifulsoup as suggested here
Thank you!