Looking for a workaround, if there is a more robust and faster polr
to fit for High Multi-dimensional data in an ordinal data context. (Similiar to those like lm()
and .lm.fit()
)
Example datasets: https://filebin.net/e1qz05qy9qo6zpwa
library(tictoc)
library(MASS)
custom_data <- read.csv(file.choose())
tic()
polr(LH_info ~ ., data = custom_data[,1:100])
toc() #0.61 seconds
ADDED EDIT: Issues found using current polr
& orm
methods:
Specifically Using this dataset for orm issues: https://filebin.net/hnpbkrw4gc9a5pn9
custom_data2 <- read.csv(file.choose())
custom_data2$OC_info <- factor(OC_custom$OC_info, order = TRUE,
levels=c("Extreme Low Open Close (<-40)","Common Lower Open Close (-40-0)",
"Common Higher Open Close (0-40)","Extreme High Open Close (>40)"))
test_model <- orm(OC_info ~ ., data = custom_data2[,1:101])
test_model2 <- orm(OC_info ~ ., data = custom_data2[,1:102])
Specifically Using this dataset for polr issues: https://filebin.net/hg7irb8al8pfs9sd
custom_data3 <- read.csv(file.choose())
custom_data3$OC_info <- factor(OC_custom$OC_info, order = TRUE,
levels=c("Extreme Low Open Close (<-40)","Common Lower Open Close (-40-0)",
"Common Higher Open Close (0-40)","Extreme High Open Close (>40)"))
test_model3 <- polr(OC_info ~ ., data = custom_data3)
polr: Error in optim(s0, fmin, gmin, method = "BFGS", ...) initial value in 'vmmin' is not finite
--> Happens sometimes with some independent variables combinationorm: Error in .local(x, ...) : Increase tmpmax
--> this always happen when try to model the dataset with more or equal of 100 independent variables