I have data like this, it's output of a groupby:
numUsers = df.groupby(["user","isvalid"]).count()
count
user isvalid
5 0.0 1336
1.0 387
But I need to have count of count_valid and count_invalid columns for each user, like this:
count_valid count_invalid
user
5 387 1336
How can I do it in optimized way in Pandas?