Just another approach using sympy.theory, factorint and Python sets which from the point of view of speed has on my machine no advantage compared to the math.lcm() or the math.gcd() based solutions if applied to small sizes of lists and numbers, but excels at very large size of randomized list:
M = 12
lstA = (6, 1, 5)
from sympy.ntheory import factorint
lstAfactors = []
for a in lstA:
lstAfactors += factorint(a)
setA = set(lstAfactors)
for k in range(1, M+1):
if not (set(factorint(k)) & setA):
print(k)
The code above implements the idea described in the answer of Yatisi coded by Tom Karzes using math.gcd(), but is using sympy.ntheory factorint()
and set()
instead of math gcd()
.
In terms of speed the factorint()
solution seems to be fastest on the below tested data:
# ======================================================================
from time import perf_counter as T
from math import gcd, lcm
from sympy import factorint
from random import choice
#M = 3000
#lstA = 100 * [6, 12, 18, 121, 256, 1024, 361, 2123, 39]
M = 8000
lstA = [ choice(range(1,8000)) for _ in range(8000) ]
# ----------------------------------------------------------------------
from sympy.ntheory import factorint
lstResults = []
lstAfactors = []
sT=T()
for a in lstA:
lstAfactors += factorint(a)
setA = set(lstAfactors)
for k in range(1, M+1):
if not (set(factorint(k)) & setA):
lstResults += [k]
print("factorint:", T()-sT)
#print(lstResults)
print("---")
# ----------------------------------------------------------------------
lstResults = []
sT=T()
#l = 1
#for a in lstA:
# l = (l*a)//gcd(l, a) # can be replaced by:
l = lcm(*lstA) # least common multiple divisible by all lstA items
# ^-- which runs MAYBE a bit faster than the loop with gcd()
for k in range(1, M+1):
if gcd(l, k) == 1:
lstResults += [k]
print("lcm() :", T()-sT)
#print(lstResults)
print("---")
# ----------------------------------------------------------------------
lstResults = []
sT=T()
l = 1
for a in lstA:
l = (l*a)//gcd(l, a) # can be replaced by:
#l = lcm(*lstA) # least common multiple divisible by all lstA items
# ^-- which runs MAYBE a bit faster than the loop with gcd()
for k in range(1, M+1):
if gcd(l, k) == 1:
lstResults += [k]
print("gcd() :", T()-sT)
#print(lstResults)
print("---")
# ----------------------------------------------------------------------
import numpy as np
A = np.array(lstA)
def find_gcd_np(M, A, to_gcd=1):
vals = np.arange(1, M + 1)
return vals[np.all(np.gcd(vals, np.array(A)[:, None]) == to_gcd, axis=0)]
sT=T()
lstResults = find_gcd_np(M, A, 1).tolist()
print("numpy :", T()-sT)
#print(lstResults)
print("---")
printing
factorint: 0.09754624799825251
---
lcm() : 0.10102138598449528
---
gcd() : 0.10236155497841537
---
numpy : 6.923375226906501
---
The timing results change extremely for the second data variant in the code provided above printing:
factorint: 0.021642255946062505
---
lcm() : 0.0010238440008834004
---
gcd() : 0.0013772319070994854
---
numpy : 0.19953695288859308
---
where the factorint based approach is 20x and the numpy based approach 200x times slower than the gcd/lcm based one.
Run the timing test yourself online. It won't run the case of large data, but it can at least demonstrate that the numpy approach is 100x times slower than the gcd one:
factorint: 0.03271647123619914
---
lcm() : 0.003286922350525856
---
gcd() : 0.0029655308462679386
---
numpy : 0.41759901121258736
1 https://ato.pxeger.com/run?1=3VXBitswED0W9BXDGoq16-zaSbtsAzmk0GN6KLmUkAbFkdcismQkZbc-9Et62Uv7Uf2ajiwnNt1Du7ClUIORpXmaefNmLH39Xjeu1Orh4dvBFaObHy--RDB7locURlfgRMUBQFS1Ng5qbopNrg_KcQPMwjKAKubKHnSb7xKQeRVstqnq5mQrWO60EcoFo2Fqh0NnzEstck6iBfqCGUzSNCWRtG6OkyxN4RxW1wlkY3xv_JglMH7tV9LxqwQm136ejSf4-WZNhk46H6suQoxhb3mcJTdpSikU2sAGhIKw7BdhTUgEo2d5BjJcKldybZrHaiDDD9wepLOe9GrdUg5mGxbscraMKfFkmSfrAVOCOQ6RF7PeZ8wosbxNHId4AAte9n3KKNziIqOtOxAFKO0g9pt6Z3sU6qV3NO9gEEIfWWPk1X5N6hZ8dto3PUsAaY_skpIoGPtN9AhHlc7oMyo-4DXULpK-kUj0i4ZRmwqaYnnO6NUV9m8sE2AUIsiZgi0Hw2vJcr6DbTMF4rHY3_G53-9RkjOL7aurSiuoMK6oJYeduBNWbPFr2wCTsg0HwvHKYsxPoxHclyIvwRyUhcX849t3yGorfFtY_3-5EoNjw4DUuoZ7gf-Yp_bb6nX89xQPAsj-oFo-F-oRT6nW3y5WqNXjdn9SpaL_rVSt139Wqu7YUgd_pOPxr2rijxdVXzJjWNOeMZTseAGFULsNkt2oOl4kME_AaT-fHZO_Y9Iet56kgQvIaGs23B2MalErj5EyxsFn75eSPuScrqYJvNeKr1sRQxjsic_CzlLat9Owyx6zy-il01JYF5-0C1k-UepwC3eX8fFS_gk)