I am running a negative binomial regression on my dataset using the glm.nb() function. My model looks something like this:
m_nb= glm.nb(Error_Count ~ TotalWL + Auto_frac +PHONE+JUSTIF_weight + MESSAGE_OTHER_count + Hour+ I(Auto_frac^2)+I(TotalWL^2), data = df)
When I ran it with a dataset of 10,000, the model is able to run, however, when I ran it with a larger dataset (60,000), I got this error:
`Error: no valid set of coefficients has been found: please supply starting values`
I then tried to give it some start values, but still throw the same error
m_nb= glm.nb(Error_Count ~ TotalWL + Auto_frac +PHONE+JUSTIF_weight + MESSAGE_OTHER_count + Hour+ I(Auto_frac^2)+I(TotalWL^2), data = df, start = c(0.02, 0.3,0.2,3,43, 4,13,0.04, 100))
Error: cannot find valid starting values: please specify some
But the model still doesn't converge. How should I set the starting value?
I also tried the same model with the fenebin() function in the fixest pacakage and the model works. However, I need the glm package, since the fixest package does not provide the standard error (S.E.) in the predict(). Thank you.