I am actually trying to see if I can get a minimal library that supports the very few operations I use from boost::fusion.
Here is what I have so far...
template < typename... Types >
struct typelist
{
};
template < template < typename... > class F, typename... Args >
struct apply
{
typedef typename F < Args... >::type type;
};
template < typename, template < typename... > class >
struct foreach;
template < typename... Types, template < typename Arg > class F >
struct foreach < typelist < Types... >, F >
{
typedef typelist < typename apply < F, Types >::type... > type;
};
Since the meta-function foreach
implementation is trivial, I thought zip
would be easy too. Apparently, this is not the case.
template < typename... >
struct zip;
template < typename... Types0, typename... Types1 >
struct zip < typelist < Types0... >, typelist < Types1... > >
{
typedef typelist < typelist < Types0, Types1 >... > type;
};
How can I generalize this zip
meta-function to arbitrary number of typelists? What we need here seems to be a parameter pack of parameter packs. I am not sure how to do that.
Edit 1:
Implementation of is_equal
...
template < std::size_t... Nn >
struct is_equal;
template < std::size_t N0, std::size_t N1, std::size_t... Nn >
struct is_equal < N0, N1, Nn... >
: and_ <
typename is_equal < N0, N1 >::type
, typename is_equal < N1, Nn... >::type
>::type
{
};
template < std::size_t M, std::size_t N >
struct is_equal < M, N > : std::false_type
{
typedef std::false_type type;
};
template < std::size_t N >
struct is_equal < N, N > : std::true_type
{
typedef std::true_type type;
};
A similar approach can be taken to zip
as well I think... haven't tried with zip
yet, but will do so when I get back home.
Edit 2:
Here is what I finally thought looked more elegant. This is basically a variation of Vaughn Cato's approach.
namespace impl
{
template < typename Initial, template < typename, typename > class F, typename... Types >
struct foldl;
template < typename Initial, template < typename, typename > class F, typename First, typename... Rest >
struct foldl < Initial, F, First, Rest... >
{
typedef typename foldl < typename F < Initial, First >::type, F, Rest... >::type type;
};
template < typename Final, template < typename, typename > class F >
struct foldl < Final, F >
{
typedef Final type;
};
template < typename Type, typename TypeList >
struct cons;
template < typename Type, typename... Types >
struct cons < Type, typelist < Types... > >
{
typedef typelist < Types..., Type > type;
};
template < typename, typename >
struct zip_accumulator;
template < typename... Types0, typename... Types1 >
struct zip_accumulator < typelist < Types0... >, typelist < Types1... > >
{
typedef typelist < typename cons < Types1, Types0 >::type... > type;
};
template < typename... Types0 >
struct zip_accumulator < typelist <>, typelist < Types0... > >
{
typedef typelist < typelist < Types0 >... > type;
};
template < typename... TypeLists >
struct zip
{
typedef typename foldl < typelist <>, zip_accumulator, TypeLists... >::type type;
};
}
template < typename... TypeLists >
struct zip
{
static_assert(and_ < typename is_type_list < TypeLists >... >::value, "All parameters must be type lists for zip");
static_assert(is_equal < TypeLists::length... >::value, "Length of all parameter type lists must be same for zip");
typedef typename impl::zip < TypeLists... >::type type;
};
template < typename... TypeLists >
struct zip < typelist < TypeLists... > > : zip < TypeLists... >
{
};
This treats zip
as a fold
operation.