> this is the error i am getting, i am new to python please help with this.
##########################################################################
ValueError Traceback (most recent call last)
Cell In[97], line 4
1 LR= LinearRegression()
3 #fit
----> 4 LR.fit(X,Y)
6 #predict
7 y_predict = LR.predict(X_test)
File ~\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\linear_model\_base.py:649, in LinearRegression.fit(self, X, y, sample_weight)
645 n_jobs_ = self.n_jobs
647 accept_sparse = False if self.positive else ["csr", "csc", "coo"]
--> 649 X, y = self._validate_data(
650 X, y, accept_sparse=accept_sparse, y_numeric=True, multi_output=True
651 )
653 sample_weight = _check_sample_weight(
654 sample_weight, X, dtype=X.dtype, only_non_negative=True
655 )
657 X, y, X_offset, y_offset, X_scale = _preprocess_data(
658 X,
659 y,
(...)
662 sample_weight=sample_weight,
663 )
File ~\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\base.py:554, in BaseEstimator._validate_data(self, X, y, reset, validate_separately, **check_params)
552 y = check_array(y, input_name="y", **check_y_params)
553 else:
--> 554 X, y = check_X_y(X, y, **check_params)
555 out = X, y
557 if not no_val_X and check_params.get("ensure_2d", True):
File ~\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\utils\validation.py:1104, in check_X_y(X, y, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, estimator)
1099 estimator_name = _check_estimator_name(estimator)
1100 raise ValueError(
1101 f"{estimator_name} requires y to be passed, but the target y is None"
1102 )
-> 1104 X = check_array(
1105 X,
1106 accept_sparse=accept_sparse,
1107 accept_large_sparse=accept_large_sparse,
1108 dtype=dtype,
1109 order=order,
1110 copy=copy,
1111 force_all_finite=force_all_finite,
1112 ensure_2d=ensure_2d,
1113 allow_nd=allow_nd,
1114 ensure_min_samples=ensure_min_samples,
1115 ensure_min_features=ensure_min_features,
1116 estimator=estimator,
1117 input_name="X",
1118 )
1120 y = _check_y(y, multi_output=multi_output, y_numeric=y_numeric, estimator=estimator)
1122 check_consistent_length(X, y)
File ~\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\utils\validation.py:919, in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator, input_name)
913 raise ValueError(
914 "Found array with dim %d. %s expected <= 2."
915 % (array.ndim, estimator_name)
916 )
918 if force_all_finite:
--> 919 _assert_all_finite(
920 array,
921 input_name=input_name,
922 estimator_name=estimator_name,
923 allow_nan=force_all_finite == "allow-nan",
924 )
926 if ensure_min_samples > 0:
927 n_samples = _num_samples(array)
File ~\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\utils\validation.py:111, in _assert_all_finite(X, allow_nan, msg_dtype, estimator_name, input_name)
109 if X.dtype == np.dtype("object") and not allow_nan:
110 if _object_dtype_isnan(X).any():
--> 111 raise ValueError("Input contains NaN")
113 # We need only consider float arrays, hence can early return for all else.
114 if X.dtype.kind not in "fc":
ValueError: Input contains NaN
###################################################################333
This is the code i am trying and getting the error above.
LR= LinearRegression(normalize=True)
#fit
LR.fit(X,Y)
#predict
y_predict = LR.predict(X_test)