I am now trying to make a program to find the Absolute Euler Pseudoprimes ('AEPSP' in short, not Euler-Jacobi Pseudoprimes), with the definition that n is an AEPSP if
a(n-1)/2 ≡ ±1 (mod n)
for all positive integers a satisfying that the GCD of a and n is 1.
I used a C++ code to generate AEPSPs, which is based on a code to generate Carmichael numbers:
#include <iostream>
#include <cmath>
#include <algorithm>
#include <numeric>
using namespace std;
unsigned int bm(unsigned int a, unsigned int n, unsigned int p){
unsigned long long b;
switch (n) {
case 0:
return 1;
case 1:
return a % p;
default:
b = bm(a,n/2,p);
b = (b*b) % p;
if (n % 2 == 1) b = (b*a) % p;
return b;
}
}
int numc(unsigned int n){
int a, s;
int found = 0;
if (n % 2 == 0) return 0;
s = sqrt(n);
a = 2;
while (a < n) {
if (a > s && !found) {
return 0;
}
if (gcd(a, n) > 1) {
found = 1;
}
else {
if (bm(a, (n-1)/2, n) != 1) {
return 0;
}
}
a++;
}
return 1;
}
int main(void) {
unsigned int n;
for (n = 3; n < 1e9; n += 2){
if (numc(n)) printf("%u\n",n);
}
return 0;
}
Yet, the program is very slow. It generates AEPSPs up to 1.5e6 in 20 minutes. Does anyone have any ideas on optimizing the program?
Any help is most appreciated. :)