I have a dataframe as such
timestamp Format MachineMode \
0 2022-08-04 07:49:00+00:00 2000 3.0
1 2022-08-04 07:50:00+00:00 2000 3.0
2 2022-08-04 07:51:00+00:00 2000 3.0
3 2022-08-04 07:52:00+00:00 2000 3.0
4 2022-08-04 07:53:00+00:00 2000 3.0
... ... ... ...
59825 2022-12-07 06:43:00+00:00 2000 1.0
59826 2022-12-07 06:44:00+00:00 2000 1.0
59827 2022-12-07 06:45:00+00:00 2000 1.0
59828 2022-12-07 06:49:00+00:00 2000 1.0
59829 2022-12-07 06:50:00+00:00 2000 1.0
RecipeName ProductionSpeed TankPressure \
0 2 LT Fanta 500.001283 4.72
1 2 LT Fanta 500.001650 4.71
2 2 LT Fanta 500.001333 4.72
3 2 LT Fanta 500.001350 4.71
4 2 LT Fanta 308.336100 5.37
... ... ... ...
59825 2 LT Coca Cola_23K Duo Pack 383.335217 4.80
59826 2 LT Coca Cola_23K Duo Pack 383.335000 4.81
59827 2 LT Coca Cola_23K Duo Pack 306.667767 4.82
59828 2 LT Coca Cola_23K Duo Pack 364.168333 4.53
59829 2 LT Coca Cola_23K Duo Pack 325.833783 4.76
CarouselPressure
0 0.98
1 0.98
2 0.98
3 0.98
4 0.96
... ...
59825 1.01
59826 0.98
59827 0.99
59828 0.93
59829 0.99
I want to resample the data to an hourly level, groupby the Format, Machinemode, recipename and the MAX productionspeed for that hour and display the TankPressure, CarouselPressure when the productionspeed is highest for that hour.
I have tried
new_bg1=new_bg.groupby(['RecipeName','Format','MachineMode', pd.Grouper(freq='H')]).ProductionSpeed.agg(['max','idxmax']).reset_index()
but I can't get it to show the values for the tankpressure and carouselpressure.
Any help would be appreciated