I applied glmmTMB and zeroinfl in pscl to the same dataset. I obtained the identical coefficients for the conditional part, but the coefficients for the binary part are somewhat different. Any idea on the potential factors that makes the difference?
Thanks!
Here's the result from zeroinfl:
# > summary(pscl.res)
#
# Call:
# zeroinfl(formula = outside_treatment ~ group + baseline.risk + Age.group +
# offset(log(Follow.up)) | group, data = final, dist = "negbin",
# link = "logit", trace = TRUE)
#
# Pearson residuals:
# Min 1Q Median 3Q Max
# -1.0332 -0.7003 -0.4041 0.1675 12.5728
# Count model coefficients (negbin with log link):
# Estimate Std. Error z value Pr(>|z|)
# (Intercept) -2.39168 0.13282 -18.007 < 2e-16 ***
# group1 -0.22475 0.09833 -2.286 0.0223 *
# baseline.risk2 -0.20385 0.12947 -1.575 0.1154
# baseline.risk3 -0.67367 0.12422 -5.423 5.85e-08 ***
# Age.group1 -0.65774 0.11554 -5.693 1.25e-08 ***
# Log(theta) 0.12366 0.07302 1.693 0.0904 .
# Zero-inflation model coefficients (binomial with logit link):
# Estimate Std. Error z value Pr(>|z|)
# (Intercept) -16.564 389.991 -0.042 0.966
# group1 -2.743 1909.909 -0.001 0.999
# ---
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
# Theta = 1.1316
# Number of iterations in BFGS optimization: 35
# Log-likelihood: -1531 on 8 Df
And here's the result from glmmTBM:
# > summary(true.zinb)
# Family: nbinom2 ( log )
# Formula:
# outside_treatment ~ group + baseline.risk + Age.group + offset(log(Follow.up))
# Zero inflation: ~1 + group
# Data: final
#
# AIC BIC logLik deviance df.resid
# 3078.1 3110.5 -1531.1 3062.1 414
#
#
# Dispersion parameter for nbinom2 family (): 1.13
#
# Conditional model:
# Estimate Std. Error z value Pr(>|z|)
# (Intercept) -2.39168 0.13282 -18.007 < 2e-16 ***
# group1 -0.22475 0.09833 -2.286 0.0223 *
# baseline.risk2 -0.20385 0.12947 -1.575 0.1154
# baseline.risk3 -0.67367 0.12422 -5.423 5.85e-08 ***
# Age.group1 -0.65774 0.11554 -5.693 1.25e-08 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Zero-inflation model:
# Estimate Std. Error z value Pr(>|z|)
# (Intercept) -20.8282 3289.0961 -0.006 0.995
# group1 0.4139 4626.1083 0.000 1.000