2

I crawled data from a website which was in string format I replaced string character and now data only contains number. But when I want to convert this column to numeric I get that error. I have two columns which first is previous_prices other is now_prices. If now the product is not on sale program fill nas with previous_prices. Previous_prices type is int64, now_prices type is object. Error is: ValueError: invalid literal for int() with base 10: '\u200d1500'.

Actually I saw a similiar question but that question is not relevant to '\u200d1500'.

now_prices_after_fillna
1450
‍1500
700
1700
2090

There are strange situation when When I change now_prices to integer and then fill na with previous_prices general data type was int. But when I want to export that data to excel I get this error. I can not understand problem.

enter image description here

Elkhan
  • 360
  • 2
  • 15

1 Answers1

2

Because \u200d is not printable character, here is solution for remove it and converting to integers:

df = pd.DataFrame({'now_prices_after_fillna':['1450', u'\u200d1500']})
    
print (df)
  now_prices_after_fillna
0                    1450
1                   ‍1500

#https://stackoverflow.com/a/54451873/2901002
import sys

# build a table mapping all non-printable characters to None
NOPRINT_TRANS_TABLE = {
    i: None for i in range(0, sys.maxunicode + 1) if not chr(i).isprintable()
}

def make_printable(s):
    """Replace non-printable characters in a string."""

    # the translate method on str removes characters
    # that map to None from the string
    return s.translate(NOPRINT_TRANS_TABLE)


df['now_prices_after_fillna'] = (df['now_prices_after_fillna'].apply(make_printable)
                                                              .astype(int))
print (df)
   now_prices_after_fillna
0                     1450
1                     1500

Another idea if mixed numeric with strings values add try with except statement:

df = pd.DataFrame({'now_prices_after_fillna':['1450', u'\u200d1500', 1000]})
    
print (df)

#https://stackoverflow.com/a/54451873/2901002
import sys

# build a table mapping all non-printable characters to None
NOPRINT_TRANS_TABLE = {
    i: None for i in range(0, sys.maxunicode + 1) if not chr(i).isprintable()
}

def make_printable(s):
    """Replace non-printable characters in a string."""

    # the translate method on str removes characters
    # that map to None from the string
    try:
        return s.translate(NOPRINT_TRANS_TABLE)
    except AttributeError:
        return s


df['now_prices_after_fillna'] = (df['now_prices_after_fillna'].apply(make_printable)
                                                              .astype(int))
print (df)
   now_prices_after_fillna
0                     1450
1                     1500
2                     1000

Test your real data:

df = pd.read_excel('your_updated_file2222.xlsx')

#https://stackoverflow.com/a/54451873/2901002
import sys

# build a table mapping all non-printable characters to None
NOPRINT_TRANS_TABLE = {
    i: None for i in range(0, sys.maxunicode + 1) if not chr(i).isprintable()
}

def make_printable(s):
    """Replace non-printable characters in a string."""

    # the translate method on str removes characters
    # that map to None from the string
    try:
        return s.translate(NOPRINT_TRANS_TABLE)
    except AttributeError:
        return s

df['price'] = df['price'].apply(make_printable).astype(int)

print (df)
     price
0     1450
1     1500
2      700
3     1700
4     2090
..     ...
206   1500
207   1290
208   1500
209   1560
210   1800

[211 rows x 1 columns]
jezrael
  • 822,522
  • 95
  • 1,334
  • 1,252