This is an example of bigger data.
I have a dataframe like this:
df = pd.DataFrame({"Year":[2023, 2023, 2023, 2024, 2024, 2024],
"Value":[0, 2, 3, 1, 5, 2],
"Field":["A", "A", "B", "A", "B", "B"],
"ID":["X", "X", "X", "X", "Z", "Y"],
"Type":["class1","class2","class1","class1","class1","class2"]})
df
Out[8]:
Year Value Field ID Type
0 2023 0 A X class1
1 2023 2 A X class2
2 2023 3 B X class1
3 2024 1 A X class1
4 2024 5 B Z class1
5 2024 2 B Y class2
I would like to create new columns based on df["Type"] values and take the values from the column df["Value"] based on the same data in columns Field and ID. So my output should be something like this:
Year Field ID class1 class2
0 2023 A X 0.0 2.0
1 2023 B X 3.0 NaN
2 2024 A X 1.0 NaN
3 2024 B Z 5.0 NaN
4 2024 B Y NaN 2.0
Anyone could help me?