2

Error:

That I'm getting when I try to convert-pth-to-ggml.py

Don't know whether the error is in my file management due to which model is unable to load or it is due to OS

Traceback (most recent call last):
  File "/Users/tanish.shah/llama.cpp/convert-pth-to-ggml.py", line 74, in <module>
    tokenizer = SentencePieceProcessor(fname_tokenizer)
  File "/Users/tanish.shah/llama.cpp/env/lib/python3.10/site-packages/sentencepiece/__init__.py", line 447, in Init
    self.Load(model_file=model_file, model_proto=model_proto)
  File "/Users/tanish.shah/llama.cpp/env/lib/python3.10/site-packages/sentencepiece/__init__.py", line 905, in Load
    return self.LoadFromFile(model_file)
  File "/Users/tanish.shah/llama.cpp/env/lib/python3.10/site-packages/sentencepiece/__init__.py", line 310, in LoadFromFile
    return _sentencepiece.SentencePieceProcessor_LoadFromFile(self, arg)
RuntimeError: Internal: /Users/runner/work/sentencepiece/sentencepiece/src/sentencepiece_processor.cc(1102) [model_proto->ParseFromArray(serialized.data(), serialized.size())]

Code of file 'convert-pth-toggml.py'

    # Convert a LLaMA model checkpoint to a ggml compatible file
    #
    # Load the model using Torch
    # Iterate over all variables and write them to a binary file.
    #
    # For each variable, write the following:
    #   - Number of dimensions (int)
    #   - Name length (int)
    #   - Dimensions (int[n_dims])
    #   - Name (char[name_length])
    #   - Data (float[n_dims])
    #
    # By default, the bigger matrices are converted to 16-bit floats.
    # This can be disabled by adding the "use-f32" CLI argument.
    #
    # At the start of the ggml file we write the model parameters
    # and vocabulary.
    #
    import os
    import sys
    import json
    import struct
    import numpy as np
    import torch
    from sentencepiece import SentencePieceProcessor
    
    if len(sys.argv) < 3:
        print("Usage: convert-ckpt-to-ggml.py dir-model ftype\n")
        print("  ftype == 0 -> float32")
        print("  ftype == 1 -> float16")
        sys.exit(1)
    
    # output in the same directory as the model
    dir_model = sys.argv[1]
    
    fname_hparams   = sys.argv[1] + "/params.json"
    fname_tokenizer = sys.argv[1] + "/../tokenizer.model"
    
    def get_n_parts(dim):
        if dim == 4096:
            return 1
        elif dim == 5120:
            return 2
        elif dim == 6656:
            return 4
        elif dim == 8192:
            return 8
        else:
            print("Invalid dim: " + str(dim))
            sys.exit(1)
    
    # possible data types
    #   ftype == 0 -> float32
    #   ftype == 1 -> float16
    #
    # map from ftype to string
    ftype_str = ["f32", "f16"]
    
    ftype = 1
    if len(sys.argv) > 2:
        ftype = int(sys.argv[2])
        if ftype < 0 or ftype > 1:
            print("Invalid ftype: " + str(ftype))
            sys.exit(1)
        fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
    
    if os.path.exists(fname_out):
        print(f"Skip conversion, it already exists: {fname_out}")
        sys.exit(0)
    
    with open(fname_hparams, "r") as f:
        hparams = json.load(f)
    
    tokenizer = SentencePieceProcessor(fname_tokenizer)
    
    hparams.update({"vocab_size": tokenizer.vocab_size()})
    
    n_parts = get_n_parts(hparams["dim"])
    
    print(hparams)
    print('n_parts = ', n_parts)
    
    for p in range(n_parts):
        print('Processing part ', p)
    
        #fname_model = sys.argv[1] + "/consolidated.00.pth"
        fname_model = sys.argv[1] + "/consolidated.0" + str(p) + ".pth"
        fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
        if (p > 0):
            fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin" + "." + str(p)
    
        model = torch.load(fname_model, map_location="cpu")
    
        fout = open(fname_out, "wb")
    
        fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
        fout.write(struct.pack("i", hparams["vocab_size"]))
        fout.write(struct.pack("i", hparams["dim"]))
        fout.write(struct.pack("i", hparams["multiple_of"]))
        fout.write(struct.pack("i", hparams["n_heads"]))
        fout.write(struct.pack("i", hparams["n_layers"]))
        fout.write(struct.pack("i", hparams["dim"] // hparams["n_heads"])) # rot (obsolete)
        fout.write(struct.pack("i", ftype))
    
        # Is this correct??
        for i in range(tokenizer.vocab_size()):
            if tokenizer.is_unknown(i):
                # "<unk>" token (translated as ??)
                text = " \u2047 ".encode("utf-8")
                fout.write(struct.pack("i", len(text)))
                fout.write(text)
            elif tokenizer.is_control(i):
                # "<s>"/"</s>" tokens
                fout.write(struct.pack("i", 0))
            elif tokenizer.is_byte(i):
                # "<U+XX>" tokens (which may be invalid UTF-8)
                piece = tokenizer.id_to_piece(i)
                if len(piece) != 6:
                    print("Invalid token: " + piece)
                    sys.exit(1)
                byte_value = int(piece[3:-1], 16)
                fout.write(struct.pack("i", 1))
                fout.write(struct.pack("B", byte_value))
            else:
                # normal token. Uses U+2581 (LOWER ONE EIGHTH BLOCK) to represent spaces.
                text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
                fout.write(struct.pack("i", len(text)))
                fout.write(text)
    
        for k, v in model.items():
            name = k
            shape = v.shape
    
            # skip layers.X.attention.inner_attention.rope.freqs
            if name[-5:] == "freqs":
                continue
    
            print("Processing variable: " + name + " with shape: ", shape, " and type: ", v.dtype)
    
            #data = tf.train.load_variable(dir_model, name).squeeze()
            data = v.numpy().squeeze()
            n_dims = len(data.shape);
    
            # for efficiency - transpose some matrices
            # "model/h.*/attn/c_attn/w"
            # "model/h.*/attn/c_proj/w"
            # "model/h.*/mlp/c_fc/w"
            # "model/h.*/mlp/c_proj/w"
            #if name[-14:] == "/attn/c_attn/w" or \
            #   name[-14:] == "/attn/c_proj/w" or \
            #   name[-11:] == "/mlp/c_fc/w" or \
            #   name[-13:] == "/mlp/c_proj/w":
            #    print("  Transposing")
            #    data = data.transpose()
    
            dshape = data.shape
    
            # default type is fp16
            ftype_cur = 1
            if ftype == 0 or n_dims == 1:
                print("  Converting to float32")
                data = data.astype(np.float32)
                ftype_cur = 0
    
            # header
            sname = name.encode('utf-8')
            fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur))
            for i in range(n_dims):
                fout.write(struct.pack("i", dshape[n_dims - 1 - i]))
            fout.write(sname);
    
            # data
            data.tofile(fout)
    
        # I hope this deallocates the memory ..
        model = None
    
        fout.close()
    
        print("Done. Output file: " + fname_out + ", (part ", p, ")")
        print("")

Tried reinstalling sentencepiece but didn't worked, think my model is not getting loaded. Here's a view to my file structure.

Here is the file tree

enter image description here

1 Answers1

0

Do you have enough system memory to complete this task? I was having an issue running the same command, but the following GitHub comment helped me out:

https://github.com/ggerganov/llama.cpp/issues/200#issuecomment-1471696438

Specifically, I ran the following commands:

sudo dd if=/dev/zero of=/swapfile bs=4M count=5120 status=progress
sudo mkswap /swapfile
sudo swapon /swapfile