I have a Python training script that makes use of CUDA GPU to train the model (Kohya Trainer script available here). It encounters out-of-memory error:
OutOfMemoryError: CUDA out of memory. Tried to allocate 2.00 MiB (GPU 1; 23.65
GiB total capacity; 144.75 MiB already allocated; 2.81 MiB free; 146.00 MiB
reserved in total by PyTorch) If reserved memory is >> allocated memory try
setting max_split_size_mb to avoid fragmentation. See documentation for Memory
Management and PYTORCH_CUDA_ALLOC_CONF
After investigation, I found out that the script is using GPU unit 1, instead of unit 0. Unit 1 is currently in high usage, not much GPU memory left, while GPU unit 0 still has adequate resources. How do I specify the script to use GPU unit 0?
Even I change from:
text_encoder.to("cuda")
to:
text_encoder.to("cuda:0")
The script is still using GPU unit 1, as specified in the error message.
Output of nvidia-smi
:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.60.11 Driver Version: 525.60.11 CUDA Version: 12.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 NVIDIA GeForce ... Off | 00000000:81:00.0 Off | Off |
| 66% 75C P2 437W / 450W | 5712MiB / 24564MiB | 100% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 1 NVIDIA GeForce ... Off | 00000000:C1:00.0 Off | Off |
| 32% 57C P2 377W / 450W | 23408MiB / 24564MiB | 100% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 1947 G /usr/lib/xorg/Xorg 4MiB |
| 0 N/A N/A 30654 C python 5704MiB |
| 1 N/A N/A 1947 G /usr/lib/xorg/Xorg 4MiB |
| 1 N/A N/A 14891 C python 23400MiB |
+-----------------------------------------------------------------------------+
UPDATE 1
The same notebook can see 2 GPU units:
import torch
for i in range(torch.cuda.device_count()):
print(torch.cuda.get_device_properties(i))
which outputs:
_CudaDeviceProperties(name='NVIDIA GeForce RTX 4090', major=8, minor=9, total_memory=24217MB, multi_processor_count=128)
_CudaDeviceProperties(name='NVIDIA GeForce RTX 4090', major=8, minor=9, total_memory=24217MB, multi_processor_count=128)
UPDATE 2
Setting CUDA_VISIBLE_DEVICES=0
results this error:
RuntimeError: CUDA error: invalid device ordinal