I am performing multilevel generalized linear models after multiple imputations however I got an error,
my variables are:
- dm2: continuous variable
- fld5: categorical variable (5 categories)
- age: continuous variable
- gender: categorical variable (2 categories)
- race: categorical variable (5 categories)
- locations: categorical variable (20 categories)
- types: categorical variables (3 categories)
This is my code:
library(survey)
library(mitools)
#imputing data
imp<- mice(mydata,seed = 123, m=5, defaultMethod = c("pmm"))
implog<-mice::complete(imp, action="long", include = TRUE)
#converting data into an imputation list
imp_list <- imputationList(split(implog, implog$.imp)[-1])
# Set up the survey design object
designs<-svydesign(id =~ locations, weights =~ weight, data=imp_list)
#Generlized linear model
model<-MIcombine(with(designs,svyglm(dm2~fld5+age+Gender+race+(fld5|locations)+(fld5|types), family=binomial(link = "logit"))))
I got this error:
Warning: ‘|’ not meaningful for factorsWarning: ‘|’ not meaningful for factorsError in contrasts<-(tmp, value = contr.funs[1 + isOF[nn]]) : contrasts can be applied only to factors with 2 or more levels
If I run this analysis without using multiple imputations. I do not get this error. Any suggestion?