I am trying to split a dataframe using json_normalize
and pd.concat
df = pd.DataFrame({
'ROW1': ['TC', 'OD', 'GN', 'OLT'],
'D2': [1680880134, 4, 0, [{'ID': '5771841270', 'SLX': [{'T1': '1', 'T2': '1729494797',
},
{'T1': '1', 'T2': '1729445',
}]}]]
})
print(df)
df_transposed = df.set_index('ROW1').transpose()
df_flattened = pd.json_normalize(df_transposed['OLT'][0], 'SLX', ['ID'])
final_df = pd.concat([df_transposed.drop('OLT', axis=1), df_flattened], axis=1)
print(final_df)
I am getting all Nan
s here
TC OD GN T1 T2 ID
D2 1680880134 4 0 NaN NaN NaN
0 NaN NaN NaN 1 1729494797 5771841270
1 NaN NaN NaN 1 1729445 5771841270
Expected output
TC OD GN T1 T2 ID
D2 1680880134 4 0 1 1729494797 5771841270
D2 1680880134 4 0 1 1729445 5771841270