I have a Pandas database Network with a network structure like this:
{'Sup': {0: 1002000157,
1: 1002000157,
2: 1002000157,
3: 1002000157,
4: 1002000157,
5: 1002000157,
6: 1002000157,
7: 1002000157,
8: 1002000157,
9: 1002000157,
10: 1002000157,
11: 1002000157,
12: 1002000157,
13: 1002000382,
14: 1002000382,
15: 1002000382,
16: 1002000382,
17: 1002000382,
18: 1002000382,
19: 1002000382,
20: 1002000382,
21: 1002000382,
22: 1002000382,
23: 1002000382,
24: 1002000382,
25: 1002000382,
26: 1002000382,
27: 1002000382,
28: 1002000382,
29: 1002000382},
'Cust': {0: 1002438313,
1: 8039296054,
2: 9003188096,
3: 14900070991,
4: 17005234747,
5: 18006860724,
6: 28000286091,
7: 29009623382,
8: 39000007702,
9: 39004420023,
10: 46000088397,
11: 50000063751,
12: 7000090017,
13: 1900120936,
14: 1900779883,
15: 2000013994,
16: 2001222824,
17: 2003032125,
18: 2900121723,
19: 2900197555,
20: 2902742641,
21: 3000101113,
22: 3000195031,
23: 3000318054,
24: 3900091301,
25: 3911084436,
26: 4900112325,
27: 5900720933,
28: 7000001703,
29: 8000004881}}
I would like to reproduce this R command (possibly without kernel interrupting) in Python:
NodesSharingSupplier <- inner_join(Network, Network, by=c('Sup'='Sup'))
This is an SQL-style inner join, thus I fear that it cannot be performed simply with an inner merge on Sup in Python.
How do I reproduce it in Python?