I need to find recursive pattern on binary time series (on 3 channels). TS sample data:
channel1_data = [0, 1, 1, 0, 0, 1, 0, 1, 0, 0]
channel2_data = [0, 0, 0, 1, 1, 0, 1, 0, 1, 0]
channel3_data = [1, 0, 0, 0, 0, 0, 0, 0, 0, 1]
pattern I want to discover:
channel1_t = [0, 1]
channel2_t = [0, 0]
channel3_t = [1, 0]
I've tried sktime library,with Rocket transformer and Ridge classifier without success:
from sktime.transformations.panel.rocket import Rocket
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import RidgeClassifierCV
import numpy as np
import pandas as pd
# Create sample data
channel1_data = [0, 1, 1, 0, 0, 1, 0, 1, 0, 0]
channel2_data = [0, 0, 0, 1, 1, 0, 1, 0, 1, 0]
channel3_data = [1, 0, 0, 0, 0, 0, 0, 0, 0, 1]
channel1_t = [0, 1]
channel2_t = [0, 0]
channel3_t = [1, 0]
X = pd.DataFrame({
'channel1': [pd.Series(channel1_data)],
'channel2': [pd.Series(channel2_data)],
'channel3': [pd.Series(channel3_data)]
})
y = pd.DataFrame({
'channel1': [pd.Series(channel1_t)],
'channel2': [pd.Series(channel2_t)],
'channel3': [pd.Series(channel3_t)]
})
# Create pipeline with Rocket transformer and Ridge classifier
clf = make_pipeline(Rocket(), RidgeClassifierCV())
# Fit pipeline to data
clf.fit(X,y)
# Predict on new data
y_pred = clf.predict(X)
print(y_pred)
this line:
clf.fit(X,y)
is generating this error:
AttributeError: 'bool' object has no attribute 'any'
I'm even not sure my approach is correct, looking for some direction/recommendation. Thx