Using the EM algorithm with a copula model is the same as the EM algorithm
with any other models, such as a mixture of the Gaussian model.
If you do not prefer to do it manually, the scopula
package in R
include a mixture copula model that can fit only two types of copula functions at a time. Also, there is a MixCopula
function in the copula
package.
Also, you can use this code, where you can fit a mixture of Gaussian copulas manually:
# Load required libraries
library(copula)
library(mvtnorm)
# Generate simulated data with a bivariate mixture distribution
set.seed(123)
n <- 1000
theta <- 0.3
mu1 <- c(0, 0)
mu2 <- c(3, 3)
sigma1 <- matrix(c(1, 0.5, 0.5, 2), ncol = 2)
sigma2 <- matrix(c(2, -0.5, -0.5, 1), ncol = 2)
u <- runif(n)
x <- ifelse(u < theta, MASS::mvrnorm(n, mu1, sigma1), MASS::mvrnorm(n, mu2, sigma2))
# Initialize the parameters
mu <- list(matrix(c(-1, -1), ncol = 2), matrix(c(1, 1), ncol = 2))
sigma <- list(matrix(c(1, 0.5, 0.5, 1), ncol = 2), matrix(c(2, -0.5, -0.5, 1), ncol = 2))
pi <- c(0.5, 0.5)
# Define the log-likelihood function
loglik <- function(x, mu, sigma, pi) {
n <- dim(x)[1]
likelihoods <- matrix(0, n, 2)
for(i in 1:2) {
likelihoods[,i] <- dmvnorm(x, mean = mu[[i]], sigma = sigma[[i]])
}
loglik <- sum(log(likelihoods %*% pi))
return(loglik)
}
# Define the Gaussian copula function
gaussian_copula <- function(x, sigma) {
n <- dim(x)[1]
d <- dim(x)[2]
rho <- cor(x)
inv_sigma <- solve(sigma)
u <- pnorm(x, mean = rep(0, d), sd = rep(1, d))
z <- qnorm(u, mean = rep(0, d), sd = rep(1, d))
phi <- dmvnorm(z, mean = rep(0, d), sigma = inv_sigma)
copula <- pnorm(z, mean = rep(0, d), sd = rep(1, d))
return(list(copula = copula, phi = phi))
}
# Run the EM algorithm
tolerance <- 1e-6
converged <- FALSE
while(!converged) {
# E-step: compute the responsibilities
likelihoods <- matrix(0, n, 2)
copulas <- list(NULL, NULL)
for(i in 1:2) {
copulas[[i]] <- gaussian_copula(x, sigma[[i]])
likelihoods[,i] <- copulas[[i]]$phi * pi[i]
}
responsibilities <- likelihoods / rowSums(likelihoods)
# M-step: update the parameters
N <- rowSums(responsibilities)
pi <- N / n
for(i in 1:2) {
mu[[i]] <- colSums(responsibilities[,i] * x) / N[i]
z <- qnorm(copulas[[i]]$copula, mean = rep(0, 2), sd = rep(1, 2))
sigma[[i]] <- solve(var(z) * (1 - copulas[[i]]$copula)^2)
}
# Check for convergence
old_loglik <- loglik(x, mu, sigma, pi)
new_loglik <- loglik(x, mu, sigma, pi)
if(abs(new_loglik - old_loglik) < tolerance) {
converged <- TRUE
}
}
# Output the estimated parameters
cat("mu1 =", mu[[1]], "mu2 =", mu[[2]], "sigma1 =", sigma[[1]], "sigma2 =", sigma[[2]], "pi1 =", pi[1], "pi2 =", pi[2])