0

Error when use Show PySpark funtion in DataFrame created from a List of Dictionaries

I've tried this to create a Datafram from a dictionary and see the rows

from pyspark.sql import SparkSession

spark = SparkSession.builder.appName('practiceDataframe23').getOrCreate()
df1 = spark.createDataFrame(data = [{'id':1, 'name':'Jose'},{'id':2, 'name':'Maria'}])
df1.show()

The error is in the last line: it doesn't show me the rows and the following output is displayed:

Py4JJavaError: An error occurred while calling o104.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 6.0 failed 1 times, most recent failure: Lost task 0.0 in stage 6.0 (TID 6) (DESKTOP-8GUEMA3.mshome.net executor driver): org.apache.spark.SparkException: Python worker failed to connect back.
    at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:188)
    at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:108)
    at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:121)
    at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:162)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
    at org.apache.spark.scheduler.Task.run(Task.scala:131)
    at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:506)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1462)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:509)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)
Caused by: java.net.SocketTimeoutException: Accept timed out
    at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
    at java.net.DualStackPlainSocketImpl.socketAccept(DualStackPlainSocketImpl.java:135)
    at java.net.AbstractPlainSocketImpl.accept(AbstractPlainSocketImpl.java:409)
    at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:199)
    at java.net.ServerSocket.implAccept(ServerSocket.java:545)
    at java.net.ServerSocket.accept(ServerSocket.java:513)
    at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:175)
    ... 29 more

Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2403)
    at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2352)
    at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2351)
    at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
    at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2351)
    at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1109)
    at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1109)
    at scala.Option.foreach(Option.scala:407)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1109)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2591)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2533)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2522)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:898)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2214)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2235)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2254)
    at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:476)
    at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:429)
    at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:48)
    at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3715)
    at org.apache.spark.sql.Dataset.$anonfun$head$1(Dataset.scala:2728)
    at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3706)
    at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103)
    at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163)
    at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90)
    at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
    at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3704)
    at org.apache.spark.sql.Dataset.head(Dataset.scala:2728)
    at org.apache.spark.sql.Dataset.take(Dataset.scala:2935)
    at org.apache.spark.sql.Dataset.getRows(Dataset.scala:287)
    at org.apache.spark.sql.Dataset.showString(Dataset.scala:326)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:282)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
    at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
    at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkException: Python worker failed to connect back.
    at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:188)
    at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:108)
    at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:121)
    at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:162)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
    at org.apache.spark.scheduler.Task.run(Task.scala:131)
    at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:506)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1462)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:509)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    ... 1 more
Caused by: java.net.SocketTimeoutException: Accept timed out
    at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
    at java.net.DualStackPlainSocketImpl.socketAccept(DualStackPlainSocketImpl.java:135)
    at java.net.AbstractPlainSocketImpl.accept(AbstractPlainSocketImpl.java:409)
    at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:199)
    at java.net.ServerSocket.implAccept(ServerSocket.java:545)
    at java.net.ServerSocket.accept(ServerSocket.java:513)
    at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:175)
    ... 29 more


​

I don't know if I'm using the correct functions to create the dataframe from a dictionary.

Any suggestions to fix this error?

  • I was not able to replicate your error using `pyspark 3.4.0 ` on `Python 3.10.11` - maybe resetting your environment will solve your issue – Simon David May 23 '23 at 06:20
  • Does this answer your question? [How to convert list of dictionaries into Pyspark DataFrame](https://stackoverflow.com/questions/52238803/how-to-convert-list-of-dictionaries-into-pyspark-dataframe) – Antriksh Chourasia May 23 '23 at 06:53
  • 1
    please try the solutions mentioned [here](https://stackoverflow.com/q/53252181/8279585) – samkart May 23 '23 at 09:37
  • @SimonDavid I'm using pyspark 3.2.0 on Python 3.9.0. There is no error when I use read.csv or other read function. – HandryG May 23 '23 at 18:11

0 Answers0