I am investigating the performance of SIMD summation in terms of speed and accuracy. To conduct this analysis, let's consider a scenario where I have multiple 1D arrays of doubles combined into a large 1D array, stored contiguously in memory. My goal is to efficiently compute the sum of the 1D arrays of doubles in a vectorized manner using C++ language. However, I have concerns regarding the accuracy of the results. Could you please provide suggestions on how to enhance the accuracy of the computed results? Additionally, I would greatly appreciate any recommendations on how to measure the speedup achieved in this process.
#include <iostream>
#include <numeric> // Include the numeric header for sequential summation
#include <cmath> // Include the cmath header for fabs
#include <vector> // Include the vector header for dynamic arrays
#if defined(__AVX__)
#include <immintrin.h> // Include the appropriate SIMD header file for AVX
#elif defined(__SSE__)
#include <emmintrin.h> // Include the appropriate SIMD header file for SSE
#else
#error "Unsupported SIMD instruction set"
#endif
template <typename T>
class VectorizedSummation {
public:
VectorizedSummation(const T* data, size_t numElements)
: data_(data), numElements_(numElements) {}
double computeSum() {
size_t simdWidth = sizeof(__m256d) / sizeof(T); // Determine the SIMD width based on the target SIMD instruction set (e.g., AVX)
// Initialize the accumulator with zeros
__m256d sum = _mm256_setzero_pd();
// Process the data in a vectorized manner
for (size_t i = 0; i < numElements_; i += simdWidth)
{
// Load a SIMD vector from memory
__m256d vec = _mm256_load_pd(reinterpret_cast<const double*>(&data_[i]));
// Add the SIMD vector to the accumulator
sum = _mm256_add_pd(sum, vec);
}
// Sum the SIMD accumulator into a scalar double
std::vector<double> result(simdWidth);
_mm256_storeu_pd(result.data(), sum);
// Result is what I really want to return.
// computing totalSum is for testing purposes and is likely to be removed
double totalSum = 0.0;
for (size_t i = 0; i < simdWidth; ++i) {
totalSum += result[i];
}
return totalSum;
}
private:
const T* data_;
size_t numElements_;
};
int main()
{
const size_t numElements = 1000000;
double* doubleData = static_cast<double*>(aligned_alloc(32, numElements * sizeof(double))); // Aligned memory for SIMD operations
float* floatData = static_cast<float*>(aligned_alloc(32, numElements * sizeof(float))); // Aligned memory for SIMD operations
// Initialize the double and float arrays with random values
for (size_t i = 0; i < numElements; ++i)
{
doubleData[i] = static_cast<double>(rand()) / RAND_MAX;
floatData[i] = static_cast<float>(rand()) / RAND_MAX;
}
// Sum the double array using vectorized summation
VectorizedSummation<double> doubleSummation(doubleData, numElements);
double doubleSum = doubleSummation.computeSum();
// Compute the sequential sum of the double array
double sequentialDoubleSum = std::accumulate(doubleData, doubleData + numElements, 0.0);
// Verify the correctness of the double summation
double tolerance = 1e-4;
bool doubleSumCorrect = std::fabs(doubleSum - sequentialDoubleSum) < tolerance;
std::cout << "Double Sum Verification: " << (doubleSumCorrect ? "Passed" : "Failed") << std::endl;
// Clean up the allocated memory
free(doubleData);
// Sum the float array using vectorized summation
VectorizedSummation<float> floatSummation(floatData, numElements);
double floatSum = floatSummation.computeSum();
// Compute the sequential sum of the float array
double sequentialFloatSum = std::accumulate(floatData, floatData + numElements, 0.0);
// Verify the correctness of the float summation
bool floatSumCorrect = std::fabs(floatSum - sequentialFloatSum) < tolerance;
std::cout << "Float Sum Verification: " << (floatSumCorrect ? "Passed" : "Failed") << std::endl;
// Clean up the allocated memory
free(floatData);
return 0;
}