I'm newbe in Pandas and i'm stuck in gettin the code for do this:
df1 ('c-code' column is unordered and may contain duplicate values):
c-code | c-text | Column B | Column C |
---|---|---|---|
970000 | null | 'val X' | 'val 1' |
932201 | null | 'val Y' | 'val 2' |
413220 | null | 'val Z' | 'val 3' |
932201 | null | 'val A' | 'val 0' |
932201 | null | 'val A' | 'val 0' |
213201 | null | 'val A' | 'val 0' |
df2 ('code' column is ordered an has unique values):
code | text |
---|---|
100101 | 'Some text 1' |
100102 | 'Some text 2' |
100103 | 'Some text 3' |
...... | ............. |
213201 | 'Some text 11' |
...... | ............. |
413220 | 'Some text 18' |
...... | ............. |
932201 | 'Some text 20' |
...... | ............. |
970000 | 'Some text 31' |
...... | ............. |
990090 | 'Some text 99' |
Desired df1:
c-code | c-text | Column B | Column C |
---|---|---|---|
970000 | 'Some text 31' | 'val X' | 'val 1' |
932201 | 'Some text 20' | 'val Y' | 'val 2' |
413220 | 'Some text 18' | 'val Z' | 'val 3' |
932201 | 'Some text 20' | 'val A' | 'val 0' |
932201 | 'Some text 20' | 'val A' | 'val 0' |
213201 | 'Some text 11' | 'val A' | 'val 0' |
I have tried .loc like:
df1.loc[df1['c-code'] == df2['code'], 'c-text'] = df_cpv['text']
with .merge too, but I haven't achieved anything good.
Many thanks in advance!!