I have a panel dataset with a 'Company Name - Country - Year' structure. The variables are financial attributes for listed companies (say, y, x1, x2 x3 etc.) located in different countries. There are 4 countries involved and the dataset spans 10 years (2011 to 2020). The number of companies for which data is available differs across the 4 countries.
Following is a snapshot of the dataset.
Company | Country | Year | D/E | TDTA | LTDTA | STDTA | Liquid ratio | Profitability | Size | P/E | Surplus |
---|---|---|---|---|---|---|---|---|---|---|---|
ALICON CASTALLOY LTD | India | 2011 | 128.3589 | 0.371844392 | 0.155361798 | 0.216482594 | 0.626872695 | 0.143452963 | 21.88224644 | 3.6629 | 0.191703899 |
ALICON CASTALLOY LTD | India | 2012 | 145.8856 | 0.361449015 | 0.075690176 | 0.285758839 | 0.632109096 | 0.121955491 | 22.26809975 | 4.6148 | 0.189898385 |
ALICON CASTALLOY LTD | India | 2013 | 114.6795 | 0.32939055 | 0.016479674 | 0.312910876 | 0.597648987 | 0.110514887 | 22.38078659 | 3.6636 | 0.161800789 |
ALICON CASTALLOY LTD | India | 2014 | 107.9006 | 0.318235519 | 0.032506572 | 0.285728947 | 0.622053575 | 0.11292846 | 22.39569031 | 4.8393 | 0.097195415 |
ALICON CASTALLOY LTD | India | 2015 | 134.124 | 0.360167667 | 0.077957692 | 0.282209976 | 0.64851083 | 0.116692366 | 22.68836349 | 15.4823 | 0.284340355 |
ALICON CASTALLOY LTD | India | 2016 | 138.4348 | 0.380129133 | 0.098677129 | 0.281452005 | 0.632704362 | 0.132214242 | 22.73671382 | 14.3018 | 0.261805373 |
ALICON CASTALLOY LTD | India | 2017 | 153.7061 | 0.386036785 | 0.121818896 | 0.264217889 | 0.685974099 | 0.128421822 | 22.76660861 | 22.4139 | 0.114658603 |
ALICON CASTALLOY LTD | India | 2018 | 106.3272 | 0.310354903 | 0.087852251 | 0.222502653 | 0.821700135 | 0.123780884 | 23.03925264 | 19.6087 | 0.091544136 |
ALICON CASTALLOY LTD | India | 2019 | 91.0259 | 0.320969758 | 0.0801801 | 0.240789659 | 0.801445692 | 0.149648519 | 23.19887655 | 14.9046 | 0.190002201 |
ALICON CASTALLOY LTD | India | 2020 | 106.5843 | 0.372381221 | 0.135538078 | 0.236843143 | 0.891019668 | 0.096605765 | 22.98210092 | 14.1902 | 0.099609827 |
AMARA RAJA BATTERIES LTD | India | 2011 | 13.9508 | 0.080751313 | 0.06281992 | 0.017931393 | 1.213515068 | 0.202486795 | 23.59240034 | 10.9429 | 0.139951793 |
AMARA RAJA BATTERIES LTD | India | 2012 | 10.21 | 0.062208615 | 0.058062164 | 0.004146452 | 1.629492248 | 0.222471791 | 23.88640399 | 11.6376 | 0.285242442 |
I want to perform a simple panel data analysis of the kind y ~ x1 + x2 + x3 using the plm package in R. Because of the 3-way structure I ran into difficulties so (as advised in Fixed Effects plm package R - multiple observations per year/id) I created a separate id for each company-country pair using dlpyr:
library(dplyr)
F1$id <- group_indices(F1, Company, Country)
where F1 is my input dataframe.
Now, when I run
library(plm)
formula = D_E ~ Liquidity_Ratio + Surplus
plm.reg <- plm(formula, data = F1, index = c("id", "Year"), model = "between")
summary(plm.reg)
I am unable to understand the results (for eg. the summary is a long list of coeffs)
Call:
plm(formula = formula, data = F1, model = "between", index = c("id",
"Year"))
Unbalanced Panel: n = 552, T = 1-11, N = 3510
Observations used in estimation: 552
Residuals:
ALL 552 residuals are 0: no residual degrees of freedom!
Coefficients: (2959 dropped because of singularities)
Estimate Std. Error t-value Pr(>|t|)
(Intercept) 0.1791 NaN NaN NaN
Liquidity_Ratio0.00450533 -0.1791 NaN NaN NaN
Liquidity_Ratio0.045110358 -0.7164 NaN NaN NaN
Liquidity_Ratio0.16995834 924.9422 NaN NaN NaN
Liquidity_Ratio0.172856618 376.0109 NaN NaN NaN
Liquidity_Ratio0.187658552 965.6439 NaN NaN NaN
and so on ending with
Liquidity_Ratio4.598641438 11.2690 NaN NaN NaN
Liquidity_Ratio4.856558476 -0.5373 NaN NaN NaN
Liquidity_Ratio5.593391052 7.4484 NaN NaN NaN
Liquidity_Ratio8.9001985 1.9260 NaN NaN Na
Total Sum of Squares: 3957000
Residual Sum of Squares: 0
R-Squared: 1
Adj. R-Squared: NaN
F-statistic: NaN on 551 and 0 DF, p-value: NA
I am new to panel data analysis and need to find out where I am going wrong.