I'm getting the following error in my Spark job (Spark version 2.4.0):
org.apache.spark.SparkException: Job aborted due to stage failure: Total size of serialized results of 1346 tasks (1024.4 MB) is bigger than spark.driver.maxResultSize (1024.0 MB)
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1889)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1877)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1876)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1876)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2110)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2059)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2048)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2065)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2086)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2105)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2130)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:945)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
at org.apache.spark.rdd.RDD.collect(RDD.scala:944)
at org.apache.spark.sql.execution.datasources.InMemoryFileIndex$.bulkListLeafFiles(InMemoryFileIndex.scala:237)
at org.apache.spark.sql.execution.datasources.InMemoryFileIndex.listLeafFiles(InMemoryFileIndex.scala:126)
at org.apache.spark.sql.execution.datasources.InMemoryFileIndex.refresh0(InMemoryFileIndex.scala:91)
at org.apache.spark.sql.execution.datasources.InMemoryFileIndex.<init>(InMemoryFileIndex.scala:67)
at org.apache.spark.sql.execution.datasources.DataSource.org$apache$spark$sql$execution$datasources$DataSource$$createInMemoryFileIndex(DataSource.scala:533)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:371)
at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:223)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:211)
at org.apache.spark.sql.DataFrameReader.parquet(DataFrameReader.scala:644)
at common.infra.StreamProviderImpl.getData(StreamProvider.scala:44)
at common.MachineProfileReader$.readMachineInfo(MachineProfileReader.scala:20)
at common.MachineProfileReader$.readLatestMachineInfoOfUniqueMachines(MachineProfileReader.scala:61)
at common.MachineProfileReader$.enrichWithMachineInfo(MachineProfileReader.scala:89)
at client.telemetry.CPUPerformanceKPIJob$$anonfun$main$1.apply$mcV$sp(CPUPerformanceKPIJob.scala:193)
at client.telemetry.CPUPerformanceKPIJob$$anonfun$main$1.apply(CPUPerformanceKPIJob.scala:26)
at client.telemetry.CPUPerformanceKPIJob$$anonfun$main$1.apply(CPUPerformanceKPIJob.scala:26)
at client.common.entities.SparkJobExecutionStatus$.run(SparkJobExecutionStatus.scala:22)
at client.telemetry.CPUPerformanceKPIJob$.main(CPUPerformanceKPIJob.scala:26)
at client.telemetry.CPUPerformanceKPIJob.main(CPUPerformanceKPIJob.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.yarn.ApplicationMaster$$anon$2.run(ApplicationMaster.scala:684)
The root cause, as I understand it from the stack trace, is at common.infra.StreamProviderImpl.getData(StreamProvider.scala:44)
:
val telemetry = spark.read.parquet(unifiedPathsFromAllStorages: _*)
For some reason, as the stack trace shows, this line causes a call to org.apache.spark.rdd.RDD.collect
down the line. This, in turn, collects all the data into the driver, causing it to exceed the driver.maxResultSize.
Any idea why that happens?
I haven't called collect()
myself.
Would appreciate a solution, other than simply increasing maxResultSize
, which may lead to out of memory errors.