Using the iris dataset, a knn-classifier was tuned with iterative search for multiple classification. However, using loss accuracy
in DALEX::model_parts()
for variable importance, provides empty results.
I would appreciate any ideas. Thank you so much for your support!
library(tidyverse)
library(tidymodels)
library(DALEXtra)
tidymodels_prefer()
df <- iris
# split
set.seed(2023)
splits <- initial_split(df, strata = Species, prop = 4/5)
df_train <- training(splits)
df_test <- testing(splits)
# workflow
df_rec <- recipe(Species ~ ., data = df_train)
knn_model <- nearest_neighbor(neighbors = tune()) %>%
set_engine("kknn") %>%
set_mode("classification")
df_wflow <- workflow() %>%
add_model(knn_model) %>%
add_recipe(df_rec)
# cross-validation
set.seed(2023)
knn_res <-
df_wflow %>%
tune_bayes(
metrics = metric_set(accuracy),
resamples = vfold_cv(df_train, strata = "Species", v = 2),
control = control_bayes(verbose = TRUE, save_pred = TRUE))
# fit
best_k <- knn_res %>%
select_best("accuracy")
knn_mod <- df_wflow %>%
finalize_workflow(best_k) %>%
fit(df_train)
# variable importance
knn_exp <- explain_tidymodels(extract_fit_parsnip(knn_mod),
data = df_rec %>% prep() %>% bake(new_data = NULL, all_predictors()),
y = df_train$Species)
set.seed(2023)
vip <- model_parts(knn_exp, type = "variable_importance", loss_function = loss_accuracy)
plot(vip) # empty plot