I'm quering SQL Database on Azure Synapse Analytics server with PySpark. However, some of my column names may contain restricted keyword(s). Here, I've prepared a generic example which I could bypass with changing the name of c.Name as something different (restricted word is "close"). However, this is not possible because I need to JOIN 2 tables with columns which contain restricted word. So, here is my generic example:
query = """Select c.Name as ClosedByName, c.Profile_Name__c FROM dbo.table as c"""
# Read from a query
dfToReadFromQueryAsArgument = (spark.read
.option(Constants.DATABASE, "server")
.option(Constants.SERVER, "workspace.sql.azuresynapse.net")
.synapsesql(query)
)
dfToReadFromQueryAsArgument.show()
The interesting thing that script will work with following queries:
query = """Select c.Name, c.Profile_Name__c FROM dbo.table as c"""
query = """Select c.Name as losedByName, c.Profile_Name__c FROM dbo.table as c"""
I've tried to use back ticks as suggested in different posts (closed
). However, this didn't work. I've also tried other escape/quoting characters. But none of them worked.
So, I need to find a way to avoid this check, either by quoting the text or forcing it to run regardless of using restricted word (close is not the same as closed). I think the check is too agressive in my case.
Error message:
Py4JJavaError Traceback (most recent call last)
/tmp/ipykernel_6968/4240601845.py in <module>
1 query = """Select c.Name as ClosedByName, c.Profile_Name__c FROM dbo.table as c"""
2
----> 3 dfToReadFromQueryAsOption = (spark.read
4 # Name of the SQL Dedicated Pool or database where to run the query
5 # Database can be specified as a Spark Config - spark.sqlanalyticsconnector.dw.database or as a Constant - Constants.DATABASE
~/cluster-env/env/lib/python3.8/site-packages/com/microsoft/spark/sqlanalytics/SqlAnalyticsReader.py in synapsesql(self, table_name)
40 df = DataFrame(jdf, sqlcontext)
41 except Exception as e:
---> 42 raise e
43 return df
~/cluster-env/env/lib/python3.8/site-packages/com/microsoft/spark/sqlanalytics/SqlAnalyticsReader.py in synapsesql(self, table_name)
37 connector = sqlcontext._jvm.com.microsoft.spark.sqlanalytics.SqlAnalyticsConnectorClass() \
38 .SQLAnalyticsFormatReader(self._jreader)
---> 39 jdf = connector.synapsesql(table_name)
40 df = DataFrame(jdf, sqlcontext)
41 except Exception as e:
~/cluster-env/env/lib/python3.8/site-packages/py4j/java_gateway.py in __call__(self, *args)
1302
1303 answer = self.gateway_client.send_command(command)
-> 1304 return_value = get_return_value(
1305 answer, self.gateway_client, self.target_id, self.name)
1306
/opt/spark/python/lib/pyspark.zip/pyspark/sql/utils.py in deco(*a, **kw)
109 def deco(*a, **kw):
110 try:
--> 111 return f(*a, **kw)
112 except py4j.protocol.Py4JJavaError as e:
113 converted = convert_exception(e.java_exception)
~/cluster-env/env/lib/python3.8/site-packages/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
324 value = OUTPUT_CONVERTER[type](answer[2:], gateway_client)
325 if answer[1] == REFERENCE_TYPE:
--> 326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
328 format(target_id, ".", name), value)
Py4JJavaError: An error occurred while calling o3616.synapsesql.
: com.microsoft.spark.sqlanalytics.SQLAnalyticsConnectorException: Queries with keywords:
create
alter
drop
with
exec
execute
insert
delete
disable
enable
update
merge
truncate
backup
restore
collate
close
deny
grant
open
revoke
revert are not allowed
at com.microsoft.spark.sqlanalytics.utils.SQLAnalyticsConnectorOptionsValidator$.validateOptions(SQLAnalyticsConnectorOptionsValidator.scala:118)
at com.microsoft.spark.sqlanalytics.utils.SQLAnalyticsConnectorOptionsValidator$.validateOptions(SQLAnalyticsConnectorOptionsValidator.scala:68)
at com.microsoft.spark.sqlanalytics.utils.Utils$.initializeAndValidateOptions(Utils.scala:122)
at com.microsoft.spark.sqlanalytics.ItemsTable.readSchema(ItemsTable.scala:96)
at com.microsoft.spark.sqlanalytics.ItemsTable.$anonfun$schema$1(ItemsTable.scala:88)
at scala.Option.getOrElse(Option.scala:189)
at com.microsoft.spark.sqlanalytics.ItemsTable.schema(ItemsTable.scala:88)
at com.microsoft.spark.sqlanalytics.SynapseSqlDataSourceV2.inferSchema(SynapseSqlDataSourceV2.scala:46)
at org.apache.spark.sql.execution.datasources.v2.DataSourceV2Utils$.getTableFromProvider(DataSourceV2Utils.scala:81)
at org.apache.spark.sql.DataFrameReader.$anonfun$load$1(DataFrameReader.scala:303)
at scala.Option.map(Option.scala:230)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:273)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:227)
at com.microsoft.spark.sqlanalytics.SqlAnalyticsConnectorClass$SQLAnalyticsFormatReader.sqlanalytics(SqlAnalyticsConnectorClass.scala:105)
at com.microsoft.spark.sqlanalytics.SqlAnalyticsConnectorClass$SQLAnalyticsFormatReader.synapsesql(SqlAnalyticsConnectorClass.scala:82)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:750)