i have a series that i need it in Dataframe. so the series looks like this.
column1 [-333, -333, -3,3 -33, -33, ...
column2 [-121.0, -431.0, -41.0, -1.0, -1.0, ...
column3 [0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, ...
column4 [-451.0, -5121.0, -41.0, -21.0, -4121.0, ...
column5 [1451.0, 19851.0, 1451.0, 1451.0, 1941.0, ...
i tried to implement this post (pandas-series-to-dataframe-using-series-indexes-as-columns) but i got this dataframe (i'm illustrating only for one column here) which all the value in a list is in one row of the dataframe:
column1
0 [-9.0,
-811.0,
-71.0,
-691.0,
-41.0, ...
is there any way to convert pandas series into dataframe while the value is a list and column value is the index.
EDIT:
the data as srs.head().to_dict()
{'column1': masked_array(data=[-4524, -41144, -44314,...,444,44005, 44],