I posted this question a few days ago, and I have some follow up doubts about marshaling an IntPtr to a struct.
The thing goes like this: As stated in the question I am referencing, I make calls to asynchronous methods on a native Dll. These methods communicate their completion with Windows Messages. I receive the Windows Message correctly now and, within it, an lParam property (of type IntPrt). According to the documentation I am following, this lParam points to the struct that has the results of the execution of the method. As a particular example, one of the structures I am trying to fill is defined as follows:
Original C signature:
typedef struct _wfs_result {
ULONG RequestID;
USHORT hService;
TIMESTAMP tsTimestamp; /*Win32 SYSTEMTIME structure according to documentation*/
LONG hResult;
union {
DWORD dwCommandCode;
DWORD dwEventID;
} u;
LPVOID lpBuffer;
} WFSRESULT, *LPWFSRESULT;
My C# definition:
[StructLayout(LayoutKind.Sequential), Serializable]
public struct Timestamp
{
public ushort wYear;
public ushort wMonth;
public ushort wDayOfWeek;
public ushort wDay;
public ushort wHour;
public ushort wMinute;
public ushort wSecond;
public ushort wMilliseconds;
}
[StructLayout(LayoutKind.Explicit), Serializable]
public struct WFSResult
{
[FieldOffset(0), MarshalAs(UnmanagedType.U4)]
public uint RequestID;
[FieldOffset(4), MarshalAs(UnmanagedType.U2)]
public ushort hService;
[FieldOffset(6), MarshalAs(UnmanagedType.Struct, SizeConst = 16)]
public Timestamp tsTimestamp;
[FieldOffset(22), MarshalAs(UnmanagedType.U4)]
public int hResult;
[FieldOffset(26), MarshalAs(UnmanagedType.U4)]
public UInt32 dwCommandCode;
[FieldOffset(26), MarshalAs(UnmanagedType.U4)]
public UInt32 dwEventID;
[FieldOffset(30), MarshalAs(UnmanagedType.U4)]
public Int32 lpBuffer;
}
Now the fun part: the native Dll I am calling belongs to an independent process, FWMAIN32.EXE, which is running in the same machine (single instance). I believe the Window Message that I receive, which is application specific (above WM_USER), returns an LParam that is not really pointing to the struct I am expecting, and that the struct resides somewhere in the memory space of the FWMAIN32.EXE process.
Initially, I tried to just Marshal.PtrToStructure (with little hope actually) and the struct got filled with garbage data. I also tried with GetLParam with same outcome. Finally, I tried to go across process boundaries with the ReadProcessMemory API, as explained in these posts:
C# p/invoke, Reading data from an Owner Drawn List Box
http://www.codeproject.com/KB/trace/minememoryreader.aspx
I get the exception code 299 (ERROR_PARTIAL_COPY: Only part of a ReadProcessMemory or WriteProcessMemory request was completed.) And additionally the byte[] I get from using ReadProcessMemory is: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
My code:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Diagnostics;
using System.ComponentModel;
using System.Runtime.InteropServices;
namespace XFSInteropMidleware
{
public class CrossBoundaryManager
{
[DllImport("kernel32")]
static extern IntPtr OpenProcess(UInt32 dwDesiredAccess, Int32 bInheritHandle, UInt32 dwProcessId);
[DllImport("kernel32")]
static extern Int32 ReadProcessMemory(IntPtr hProcess, IntPtr lpBaseAddress, [In, Out] byte[] lpBuffer, UInt32 dwSize, out IntPtr lpNumberOfBytesRead);
[DllImport("kernel32")]
static extern Int32 CloseHandle(IntPtr hObject);
[DllImport("kernel32")]
static extern int GetLastError();
private const string nativeProcessName = "FWMAIN32";
private IntPtr hProcess = IntPtr.Zero;
const uint PROCESS_ALL_ACCESS = (uint)(0x000F0000L | 0x00100000L | 0xFFF);
static int dwSize = 34; //The size of the struct I want to fill
byte[] lpBuffer = new byte[dwSize];
public void OpenProcess()
{
Process[] ProcessesByName = Process.GetProcessesByName(nativeProcessName);
hProcess = CrossBoundaryManager.OpenProcess(CrossBoundaryManager.PROCESS_ALL_ACCESS, 1, (uint)ProcessesByName[0].Id);
}
public byte[] ReadMemory(IntPtr lParam, ref int lastError)
{
try
{
IntPtr ptrBytesReaded;
OpenProcess();
Int32 result = CrossBoundaryManager.ReadProcessMemory(hProcess, lParam, lpBuffer, (uint)lpBuffer.Length, out ptrBytesReaded);
return lpBuffer;
}
finally
{
int processLastError = GetLastError();
if (processLastError != 0)
{
lastError = processLastError;
}
if (hProcess != IntPtr.Zero)
CloseHandle(hProcess);
}
}
public void CloseProcessHandle()
{
int iRetValue;
iRetValue = CrossBoundaryManager.CloseHandle(hProcess);
if (iRetValue == 0)
throw new Exception("CloseHandle failed");
}
}
}
And I use it like this:
protected override void WndProc(ref Message m)
{
StringBuilder sb = new StringBuilder();
switch (m.Msg)
{
case OPEN_SESSION_COMPLETE:
GCHandle openCompleteResultGCH = GCHandle.Alloc(m.LParam); //So the GC does not eat the pointer before I can use it
CrossBoundaryManager manager = new CrossBoundaryManager();
int lastError = 0;
byte[] result = manager.ReadMemory(m.LParam, ref lastError);
if (lastError != 0)
{
txtState.Text = "Last error: " + lastError.ToString();
}
StringBuilder byteResult = new StringBuilder();
for (int i = 0; i < result.Length; i++)
{
byteResult.Append(result[i].ToString() + " ");
}
sb.AppendLine("Memory Read Result: " + byteResult.ToString());
sb.AppendLine("Request ID: " + BitConverter.ToInt32(result, 0).ToString());
txtResult.Text += sb.ToString();
manager.CloseProcessHandle();
break;
}
base.WndProc(ref m);
}
Is it correct to go across process boundaries in this case? Is it correct to use lParam as the base address for ReadProcessMemory? Is the CLR turning lParam to something I cannot use? Why I am getting the 299 exception? I correctly get the process ID of FWMAIN32.EXE, but how can I be sure the lParam is pointing inside its memory space? Should I consider the use of "unsafe"? Could anyone recommend that approach? Are there any other ways to custom marshal the struct?
Too many questions on a single post, I know, but I think they all point to resolving this issue. Thank you all for your help in advance, and sorry I had to make it so long.