I've been trying to build a filter that can successfully combine compass, geomagnetic, and gyroscopic data to produce a smooth augmented reality experience. After reading this post along with lots of discussions, I finally found out a good algorithm to correct my sensor data. Most examples I've read show how to correct accelerometers with gyroscopes, but not correct compass + accelerometer data with gyroscope. This is the algorithm I've settled upon, which works great except that I run into gimbal lock if I try to look at the scene if I'm not facing North. This algorithm is Balance Filter, only instead of only implemented in 3D
Initialization Step:
- Initialize a world rotation matrix using the (noisy) accelerometer and compass sensor data (this is provided by the Android already)
Update Steps:
Integrate the gyroscope reading (time_delta * reading) for each axis (x, y, z)
Rotate the world rotation matrix using the Euler angles supplied by the integration
Find the Quaternion from the newly rotated matrix
Find the rotation matrix from the unfiltered accelerometer + compass data (using the OS provided function, I think it uses angle/axis calculation)
Get the quaternion from the matrix generated in the previous step.
Slerp between quaternion generated in step 2 (from the gyroscope), and the accelerometer data using a coefficient based on some experimental magic
Convert back to a matrix and use that to draw the scene.
My problem is that when I'm facing North and then try to look south, the whole thing blows up and it appears to be gimbal lock. After a few gimbal locks, the whole filter is in an undefined state. Searching around I hear everybody saying "Just use Quaternions" but I'm afraid it's not that simple (at least not to me) and I know there's something I'm just missing. Any help would be greatly appreciated.