Solution: Wrap data with the new comparison
Since the builtin functions don't directly support cmp functions, we need to build new variants of heapify and heappop:
from heapq import heapify, heappop
from functools import cmp_to_key
def new_heapify(data, cmp):
s = list(map(cmp_to_key(cmp), data))
heapify(s)
return s
def new_heappop(data):
return heappop(data).obj
Those are used just like your example:
>>> l = [ ['a', 3], ['b', 1] ]
>>> def foo(x, y):
... return x[1]-y[1]
...
>>> heap = new_heapify(l, cmp=foo)
>>> new_heappop(heap)
['b', 1]
Solution: Store Augmented Tuples
A more traditional solution is to store (priority, task) tuples on the heap:
pq = [ ]
heappush(pq, (10, task1))
heappush(pq, (5, task2))
heappush(pq, (15, task3))
priority, task = heappop(pq)
This works fine as long as no two tasks have the same priority; otherwise, the tasks themselves are compared (which might not work at all in Python 3).
The regular docs give guidance on how to implement priority queues using heapq:
http://docs.python.org/library/heapq.html#priority-queue-implementation-notes