local()
can implement a singleton pattern -- e.g., the snow
package uses this to track the single Rmpi instance that the user might create.
getMPIcluster <- NULL
setMPIcluster <- NULL
local({
cl <- NULL
getMPIcluster <<- function() cl
setMPIcluster <<- function(new) cl <<- new
})
local()
might also be used to manage memory in a script, e.g., allocating large intermediate objects required to create a final object on the last line of the clause. The large intermediate objects are available for garbage collection when local
returns.
Using a function to create a closure is a factory pattern -- the bank account example in the Introduction To R documentation, where each time open.account
is invoked, a new account is created.
As @otsaw mentions, memoization might be implemented using local, e.g., to cache web sites in a crawler
library(XML)
crawler <- local({
seen <- new.env(parent=emptyenv())
.do_crawl <- function(url, base, pattern) {
if (!exists(url, seen)) {
message(url)
xml <- htmlTreeParse(url, useInternal=TRUE)
hrefs <- unlist(getNodeSet(xml, "//a/@href"))
urls <-
sprintf("%s%s", base, grep(pattern, hrefs, value=TRUE))
seen[[url]] <- length(urls)
for (url in urls)
.do_crawl(url, base, pattern)
}
}
.do_report <- function(url) {
urls <- as.list(seen)
data.frame(Url=names(urls), Links=unlist(unname(urls)),
stringsAsFactors=FALSE)
}
list(crawl=function(base, pattern="^/.*html$") {
.do_crawl(base, base, pattern)
}, report=.do_report)
})
crawler$crawl(favorite_url)
dim(crawler$report())
(the usual example of memoization, Fibonacci numbers, is not satisfying -- the range of numbers that don't overflow R's numeric representation is small , so one would probably use a look-up table of efficiently pre-calculated values). Interesting how crawler here is a singleton; could as easily have followed a factory pattern, so one crawler per base URL.