This question follows from a related question of mine posted here. @mhum suggested that my problem falls into the covering problem domain. I tried encoding my question into a minimum set cover problem and currently I have a dataset in this form:
Set Cost
(1,2) 1
(1) 1
(1,2,3) 2
(1) 2
(3,4) 2
(4) 3
(1,2) 3
(3,4) 4
(1,2,3,4) 4
The objective is to find a good set cover that covers all numbers and one that attempts to minimize the total cost. My dataset is big with at least 30000 sets (of size varying from 5-40 elements) like this. Are there any good greedy implementations to solve this or am I on my own to implement this? I am not an expert in LP but any LP-solvers (from numpy/scipy) that can solve this are also acceptable.