There're several options. Since you know the number is between 0-100, there is the obvious: cheat, simply make an array and fill in the numbers.
The other way would be a loop. You'd need all the primes under 100, because a number which is smaller than 100 can't be expressed using the sum of a prime which is larger than 100. Eg. 99 can't be expressed as the sum of 2 and any prime larger than 100.
What you also know is: the maximum length of the sum for even numbers is the number divided by 2. Since 2 is the smallest prime. For odd numbers the maximum length is (number - 1) / 2.
Eg.
8 = 2 + 2 + 2 + 2, thus length of the sum is 4
9 = 2 + 2 + 2 + 3, thus length of the sum is 4
If you want performance you could cheat in another way by using GPGPU, which would significantly increase performance.
Then they're is the shuffling method. If you know 7 = 2 + 2 + 3, you know 7 = 2 + 3 + 2. To do this you'd need a method of calculating the different possibilities of shuffling. You could store the combinations of possibilities or keep them in mind while writing your loop.
Here is a relative brute force method (in Java):
int[] primes = new int[]{/* fill with primes < 100 */};
int number = 7; //Normally determined by user
int maxLength = (number % 2 == 0) ? number / 2 : (number - 1) / 2; //If even number maxLength = number / 2, if odd, maxLength = (number - 1) / 2
int possibilities = 0;
for (int i = 1; i <= maxLength; i++){
int[][] numbers = new int[i][Math.pow(primes.length, i)]; //Create an array which will hold all combinations for this length
for (int j = 0; j < Math.pow(primes.length, i); j++){ //Loop through all the possibilities
int value = 0; //Value for calculating the numbers making up the sum
for (int k = 0; k < i; k++){
numbers[k][j] = primes[(j - value) % (Math.pow(primes.length, k))]; //Setting the numbers making up the sum
value += numbers[k][j]; //Increasing the value
}
}
for (int x = 0; x < primes.length; x++){
int sum = 0;
for (int y = 0; y < i; y++){
sum += numbers[y];
if (sum > number) break; //The sum is greater than what we're trying to reach, break we've gone too far
}
if (sum == number) possibilities++;
}
}
I understand this is complicated. I will try to use an analogy. Think of it as a combination lock. You know the maximum number of wheels, which you have to try, hence the "i" loop. Next you go through each possibility ("j" loop) then you set the individual numbers ("k" loop). The code in the "k" loop is used to go from the current possibility (value of j) to the actual numbers. After you entered all combinations for this amount of wheels, you calculate if any were correct and if so, you increase the number of possibilities.
I apologize in advance if I made any errors in the code.