What's the best way to create a singleton in C? A concurrent solution would be nice.
I am aware that C isn't the first language you would use for a singleton.
What's the best way to create a singleton in C? A concurrent solution would be nice.
I am aware that C isn't the first language you would use for a singleton.
First, C is not suitable for OO programming. You'd be fighting all the way if you do. Secondly, singletons are just static variables with some encapsulation. So you can use a static global variable. However, global variables typically have far too many ills associated with them. You could otherwise use a function local static variable, like this:
int *SingletonInt() {
static int instance = 42;
return &instance;
}
or a smarter macro:
#define SINGLETON(t, inst, init) t* Singleton_##t() { \
static t inst = init; \
return &inst; \
}
#include <stdio.h>
/* actual definition */
SINGLETON(float, finst, 4.2);
int main() {
printf("%f\n", *(Singleton_float()));
return 0;
}
And finally, remember, that singletons are mostly abused. It is difficult to get them right, especially under multi-threaded environments...
You don't need to. C already has global variables, so you don't need a work-around to simulate them.
It's the same as the C++ version pretty much. Just have a function that returns an instance pointer. It can be a static variable inside the function. Wrap the function body with a critical section or pthread mutex, depending on platform.
#include <stdlib.h>
struct A {
int a;
int b;
};
struct A* getObject() {
static struct A *instance = NULL;
// do lock here
if(instance == NULL)
{
instance = malloc(sizeof(*instance));
instance->a = 1;
instance->b = 2;
}
// do unlock
return instance;
};
Note that you'd need a function to free up the singleton too. Especially if it grabs any system resources that aren't automatically released on process exit.
EDIT: My answer presumes the singleton you are creating is somewhat complex and has a multi-step creation process. If it's just static data, go with a global like others have suggested.
A singleton in C will be very weird . . . I've never seen an example of "object oriented C" that looked particularly elegant. If possible, consider using C++. C++ allows you to pick and choose which features you want to use, and many people just use it as a "better C".
Below is a pretty typical pattern for lock-free one-time initialization. The InterlockCompareExchangePtr atomically swaps in the new value if the previous is null. This protects if multiple threads try to create the singleton at the same time, only one will win. The others will delete their newly created object.
MyObj* g_singleton; // MyObj is some struct.
MyObj* GetMyObj()
{
MyObj* singleton;
if (g_singleton == NULL)
{
singleton = CreateNewObj();
// Only swap if the existing value is null. If not on Windows,
// use whatever compare and swap your platform provides.
if (InterlockCompareExchangePtr(&g_singleton, singleton, NULL) != NULL)
{
DeleteObj(singleton);
}
}
return g_singleton;
}
DoSomethingWithSingleton(GetMyObj());
Here's another perspective: every file in a C program is effectively a singleton class that is auto instantiated at runtime and cannot be subclassed.
extern
in some header file).Give everything a proper prefix and now you can use my_singleton_method()
in lieu of my_singleton.method()
.
If your singleton is complex you can write a generate_singleton()
method to initialize it before use, but then you need to make sure all the other public methods check if it was called and error out if not.
I think this solution might be the simplest and best for most use cases...
In this example, I am creating a single instance global dispatch queue, which you'd definitely do, say, if you were tracking dispatch source events from multiple objects; in that case, every object listening to the queue for events could be notified when a new task is added to the queue. Once the global queue is set (via queue_ref()
), it can be referenced with the queue
variable in any file in which the header file is included (examples are provided below).
In one of my implementations, I called queue_ref()
in AppDelegate.m (main.c would work, too). That way, queue
will be initialized before any other calling object attempts to access it. In the remaining objects, I simply called queue
. Returning a value from a variable is much faster than calling a function, and then checking the value of the variable before returning it.
In GlobalQueue.h:
#ifndef GlobalQueue_h
#define GlobalQueue_h
#include <stdio.h>
#include <dispatch/dispatch.h>
extern dispatch_queue_t queue;
extern dispatch_queue_t queue_ref(void);
#endif /* GlobalQueue_h */
In GlobalQueue.c:
#include "GlobalQueue.h"
dispatch_queue_t queue;
dispatch_queue_t queue_ref(void) {
if (!queue) {
queue = dispatch_queue_create_with_target("GlobalDispatchQueue", DISPATCH_QUEUE_SERIAL, dispatch_get_main_queue());
}
return queue;
}
To use:
#include "GlobalQueue.h"
in any Objective-C or C implementation source file.queue_ref()
to use the dispatch queue. Once queue_ref()
has been called, the queue can be used via the queue
variable in all source filesExamples:
Calling queue_ref():
dispatch_queue_t serial_queue_with_queue_target = dispatch_queue_create_with_target("serial_queue_with_queue_target", DISPATCH_QUEUE_SERIAL, **queue_ref()**);
Calling queue:
dispatch_queue_t serial_queue_with_queue_target = dispatch_queue_create_with_target("serial_queue_with_queue_target", DISPATCH_QUEUE_SERIAL, **queue**));]
Just do
void * getSingleTon() {
static Class object = (Class *)malloc( sizeof( Class ) );
return &object;
}
which works in a concurrent environment too.