This question is a slight extension of the one answered here. I am working on re-implementing a version of the histogram approximation found in Section 2.1 of this paper, and I would like to get all my ducks in a row before beginning this process again. Last time, I used boost::multi_index
, but performance wasn't the greatest, and I would like to avoid the logarithmic in number of buckets insert/find complexity of a std::set
. Because of the number of histograms I'm using (one per feature per class per leaf node of a random tree in a random forest), the computational complexity must be as close to constant as possible.
A standard technique used to implement a histogram involves mapping the input real value to a bin number. To accomplish this, one method is to:
- initialize a standard C array of size N, where N = number of bins; and
- multiply the input value (real number) by some factor and floor the result to get its index in the C array.
This works well for histograms with uniform bin size, and is quite efficient. However, Section 2.1 of the above-linked paper provides a histogram algorithm without uniform bin sizes.
Another issue is that simply multiplying the input real value by a factor and using the resulting product as an index fails with negative numbers. To resolve this, I considered identifying a '0' bin somewhere in the array. This bin would be centered at 0.0; the bins above/below it could be calculated using the same multiply-and-floor method just explained, with the slight modification that the floored product be added to two or subtracted from two as necessary.
This then raises the question of merges: the algorithm in the paper merges the two closest bins, as measured from center to center. In practice, this creates a 'jagged' histogram approximation, because some bins would have extremely large counts and others would not. Of course, this is due to non-uniform-sized bins, and doesn't result in any loss of precision. A loss of precision does, however, occur if we try to normalize the non-uniform-sized bins to make the uniform. This is because of the assumption that m/2 samples fall to the left and right of the bin center, where m = bin count. We could model each bin as a gaussian, but this will still result in a loss of precision (albeit minimal)
So that's where I'm stuck right now, leading to this major question: What's the best way to implement a histogram accepting streaming data and storing each sample in bins of uniform size?