First, there are a lot of commonalities between functional and logic programming. That is, a lot of notions developed in one community can also be used in the other. Both paradigms started with rather crude implementations and strive towards purity.
But you want to know the differences.
So I will take Haskell on the one side and Prolog with constraints on the other. Practically all current Prolog systems offer constraints of some sort, like B, Ciao, ECLiPSe, GNU, IF, Scryer, SICStus, SWI, YAP, XSB. For the sake of the argument, I will use a very simple constraint dif/2
meaning inequality, which was present even in the very first Prolog implementation - so I will not use anything more advanced than that.
What functional programming is lacking
The most fundamental difference revolves around the notion of a variable. In functional programming a variable denotes a concrete value. This value must not be entirely defined, but only those parts that are defined can be used in computations. Consider in Haskell:
> let v = iterate (tail) [1..3]
> v
[[1,2,3],[2,3],[3],[],*** Exception: Prelude.tail: empty list
After the 4th element, the value is undefined. Nevertheless, you can use the first 4 elements safely:
> take 4 v
[[1,2,3],[2,3],[3],[]]
Note that the syntax in functional programs is cleverly restricted to avoid that a variable is left undefined.
In logic programming, a variable does not need to refer to a concrete value. So, if we want a list of 3 elements, we might say:
?- length(Xs,3).
Xs = [_A,_B,_C].
In this answer, the elements of the list are variables. All possible instances of these variables are valid solutions. Like Xs = [1,2,3]
. Now, lets say that the first element should be different to the remaining elements:
?- length(Xs,3), Xs = [X|Ys], maplist(dif(X), Ys).
Xs = [X,_A,_B], Ys = [_A,_B], dif(X,_B), dif(X,_A).
Later on, we might demand that the elements in Xs
are all equal. Before I write it out, I will try it alone:
?- maplist(=(_),Xs).
Xs = []
; Xs = [_A]
; Xs = [_A,_A]
; Xs = [_A,_A,_A]
; Xs = [_A,_A,_A,_A]
; ... .
See that the answers contain always the same variable? Now, I can combine both queries:
?- length(Xs,3), Xs = [X|Ys], maplist(dif(X), Ys), maplist(=(_),Xs).
false.
So what we have shown here is that there is no 3 element list where the first element is different to the other elements and all elements are equal.
This generality has permitted to develop several constraint languages which are offered as libraries to Prolog systems, the most prominent are CLPFD and CHR.
There is no straight forward way to get similar functionality in functional programming. You can emulate things, but the emulation isn't quite the same.
What logic programming is lacking
But there are many things that are lacking in logic programming that make functional programming so interesting. In particular:
Higher-order programming: Functional programming has here a very long tradition and has developed a rich set of idioms. For Prolog, the first proposals date back to the early 1980s, but it is still not very common. At least ISO Prolog has now the homologue to apply called call/2, call/3 ...
.
Lambdas: Again, it is possible to extend logic programming in that direction, the most prominent system is Lambda Prolog. More recently, lambdas have been developed also for ISO Prolog.
Type systems: There have been attempts, like Mercury, but it has not caught on that much. And there is no system with functionality comparable to type classes.
Purity: Haskell is entirely pure, a function Integer -> Integer is a function. No fine print lurking around. And still you can perform side effects. Comparable approaches are very slowly evolving.
There are many areas where functional and logic programming more or less overlap. For example backtracking and lazyness and list comprehensions, lazy evaluation and freeze/2
, when/2
, block
. DCGs and monads. I will leave discussing these issues to others...