Suppose you and I have a common friend. If I decide that I no longer like her, she is still your friend. On the other hand, if I give her a gift, your friend received a gift.
Assignment doesn't copy anything in Python, and "copy by reference" is somewhere between awkward and meaningless (as you actually point out in one of your comments). Assignment causes a variable to begin referring to a value. There aren't separate "fundamental types" in Python; while some of them are built-in, int
is still a class.
In both cases, assignment causes the variable to refer to whatever it is that the right-hand-side evaluates to. The behaviour you're seeing is exactly what you should expect in that environment, per the metaphor. Whether your "friend" is an int
or a Klasa
, assigning to an attribute is fundamentally different from reassigning the variable to a completely other instance, with the correspondingly different behaviour.
The only real difference is that the int
doesn't happen to have any attributes you can assign to. (That's the part where the implementation actually has to do a little magic to restrict you.)
You are confusing two different concepts of a "reference". The C++ T&
is a magical thing that, when assigned to, updates the referred-to object in-place, and not the reference itself; that can never be "reseated" once the reference is initialized. This is useful in a language where most things are values. In Python, everything is a reference to begin with. The Pythonic reference is more like an always-valid, never-null, not-usable-for-arithmetic, automatically-dereferenced pointer. Assignment causes the reference to start referring to a different thing completely. You can't "update the referred-to object in-place" by replacing it wholesale, because Python's objects just don't work like that. You can, of course, update its internal state by playing with its attributes (if there are any accessible ones), but those attributes are, themselves, also all references.