Old question. I'm suprised that nobody quoted the canonical sources: Java: an Overview by James Gosling, Design Patterns: Elements of Reusable Object-Oriented Software by the Gang of Four or Effective Java by Joshua Bloch (among other sources).
I will start with a quote:
An interface is simply a specification of a set of methods that an object responds to. It does not include any instance variables or implementation. Interfaces can be multiply-inherited (unlike classes) and they can be used in a more flexible way than the usual rigid class
inheritance structure. (Gosling, p.8)
Now, let's take your assumptions and questions one by one (I'll voluntarily ignore the Java 8 features).
Assumptions
Interface is collection of ONLY abstract methods and final fields.
Did you see the keyword abstract
in Java interfaces? No. Then you should not consider an interface as a collection of abstract methods. Maybe you are misleaded by the C++ so-called interfaces, which are classes with only pure virtual methods. C++, by design, does not have (and does not need to have) interfaces, because it has mutliple inheritance.
As explained by Gosling, you should rather consider an interface as "a set of methods that an object responds to". I like to see an interface and the associated documentation as a service contract. It describes what you can expect from an object that implements that interface. The documentation should specify the pre and post-conditions (e.g. the parameters should be not null, the output is always positive, ...) and the invariants (a method that does not modify the object internal state). This contract is the heart, I think, of OOP.
There is no multiple inheritance in Java.
Indeed.
JAVA omits many rarely used, poorly understood, confusing features of C++ that in our experience bring more grief than benefit. This primarily consists of operator overloading (although it does have method overloading), multiple inheritance, and extensive automatic coercions. (Gosling, p.2)
Nothing to add.
Interfaces can be used to achieve multiple inheritance in Java.
No, simlpy because there is no multiple inheritance in Java. See above.
One Strong point of Inheritance is that We can use the code of base class in derived class without writing it again. May be this is the most important thing for inheritance to be there.
That's called "implementation inheritance". As you wrote, it's a convenient way to reuse code.
But it has an important counterpart:
parent classes often define at least part of their subclasses' physical representation. Because inheritance exposes a subclass to details of its parent's implementation, it's often said that "inheritance breaks encapsulation" [Sny86]. The implementation of a subclass becomes so bound up with the implementation of its parent class that any change in the parent's implementation will force the subclass to change. (GOF, 1.6)
(There is a similar quote in Bloch, item 16.)
Actually, inheritance serves also another purpose:
Class inheritance combines interface inheritance and implementation inheritance. Interface inheritance defines a new interface in terms of one
or more existing interfaces. Implementation inheritance defines a new implementation in terms of one or more existing implementations. (GOF, Appendix A)
Both use the keyword extends
in Java. You may have hierarchies of classes and hierarchies of interfaces. The first ones share implementation, the second ones share obligation.
Questions
Q1. As interfaces are having only abstract methods (no code) so how can we say that if we are implementing any interface then it is inheritance ? We are not using its code.**
Implementation of an interface is not inheritance. It's implementation. Thus the keyword implements
.
Q2. If implementing an interface is not inheritance then How interfaces are used to achieve multiple inheritance ?**
No multiple inheritance in Java. See above.
Q3. Anyhow what is the benefit of using Interfaces ? They are not having any code. We need to write code again and again in all classes we implement it./Then why to make interfaces ?/What are the exact benefits of using interfaces? Is it really Multiple-Inheritance that we achieve using Interfaces?
The most important question is: why would you like to have multiple-inheritance? I can think of two answers: 1. to give mutliple types to an object; 2. to reuse code.
Give mutliple types to an object
In OOP, one object may have different types. For instance in Java, an ArrayList<E>
has the following types: Serializable
, Cloneable
, Iterable<E>
, Collection<E>
, List<E>
, RandomAccess
, AbstractList<E>
, AbstractCollection<E>
and Object
(I hope I have not forgotten anyone). If an object has different types, various consumers will be able use it without be aware of its specificities. I need an Iterable<E>
and you give me a ArrayList<E>
? It's ok. But if I need now a List<E>
and you give me a ArrayList<E>
, it's ok too. Etc.
How do you type an object in OOP? You took the Runnable
interface as an example, and this example is perfect to illustrate the answer to this question. I quote the official Java doc:
In addition, Runnable provides the means for a class to be active while not subclassing Thread.
Here's the point: Inheritance is a convenient way of typing objects. You want to create a thread? Let's subclass the Thread
class. You want an object to have different types, let's use mutliple-inheritance. Argh. It doesn't exist in Java. (In C++, if you want an object to have different types, multiple-inheritance is the way to go.)
How to give mutliple types to an object then? In Java, you can type your object directly. That's what you do when your class implements
the Runnable
interface. Why use Runnable
if your a fan of inheritance? Maybe because your class is already a subclass of another class, let's say A
. Now your class has two types: A
and Runnable
.
With multiple interfaces, you can give multiple types to an object. You just have to create a class that implements
multiple interfaces. As long as you are compliant with the contracts, it's ok.
Reuse code
This is a difficult subject; I've already quoted the GOF on breaking the encapsulation. Other answer mentionned the diamond problem. You could also think of the Single Responsibility Principle:
A class should have only one reason to change. (Robert C. Martin, Agile Software Development, Principles, Patterns, and Practices)
Having a parent class may give a class a reason to change, besides its own responsibilities:
The superclass’s implementation may change from release to release, and if it does, the subclass may break, even though its code has not been touched. As a consequence, a subclass must evolve in tandem with its superclass (Bloch, item 16).
I would add a more prosaic issue: I always have a weird feeling when I try to find the source code of a method in a class and I can't find it. Then I remember: it must be defined somewhere in the parent class. Or in the grandparent class. Or maybe even higher. A good IDE is a valuable asset in this case, but it remains, in my mind, something magical. Nothing similar with hierarchies of interfaces, since the javadoc is the only thing I need: one keyboard shortcut in the IDE and I get it.
Inheritance howewer has advantages:
It is safe to use inheritance within a package, where the subclass and the superclass implementations are under the control of the same programmers. It is also safe to use inheritance when extending classes specifically designed and documented for extension (Item 17: Design and document for inheritance or else prohibit it). (Bloch, item 16)
An example of a class "specifically designed and documented for extension" in Java is AbstractList
.
But Bloch and GOF insist on this: "Favor composition over inheritance":
Delegation is a way of making composition as powerful for reuse as inheritance [Lie86, JZ91]. In delegation, two objects are involved in handling a request: a receiving object delegates operations to its delegate. This is analogous to subclasses deferring requests to parent classes. (GOF p.32)
If you use composition, you won't have to write the same code again and again. You just create a class that handles the duplications, and you pass an instance of this class to the classes that implements the interface. It's a very simple way to reuse code. And this helps you to follow the Single Responsibility Principle and make the code more testable. Rust and Go don't have inheritance (they don't have classes either), but I don't think that the code is more redundant than in other OOP languages.
Furthermore, if you use composition, you will find yourself naturally using interfaces to give your code the structure and the flexibility it needs (see other answers on use cases of interfaces).
Note: you can share code with Java 8 interfaces
And finally, one last quote:
During the memorable Q&A session, someone asked him [James Gosling]: "If you could do Java over again, what would you change?" "I'd leave out classes" (anywhere on the net, don't know if this is true)