Longest arithmetic progression of a set of numbers {ab1,ab2,ab3 .... abn} is defined as a subset {bb1,bb2,bb3 .... bbn} such that bi+1 - bi is constant.
I would like to extend this problems to a set of two dimensional points lying on a straight line. Lets define Dist(P1,P2) is the distance between two Points P1(X1,Y1) and P2(X2,Y2) on a line as
Dist(P1,P2) = Dist((X1,Y1),(X2,Y2)) = (X2 - X1)2 + (Y2 - Y1))2
Now For a given set of points I need to find the largest Arithmetic Progression such that Dist(Pi,Pi+1) is constant, assuming they all lie on the same line (m & C are constant).
I researched a bit but could not figure out an algorithm which is better than O(n2).
In fact currently the way I am doing is I am maintaining a Dictionary say
DistDict=dict()
and say Points are defined in a List as
Points = [(X1,Y1),(X2,Y2),....]
then this is what I am doing
for i,pi in enumerate(Points):
for pj in Points[i+1:]:
DistDict.setdefault(dist(pi,pj),set([])).add((pi,pj))
so all I have ended up with a dictionary of points which are of equal distance. So the only thing I have to do is to scan through to find out the longest set
.
I am just wondering that this ought to have a better solution, but somehow I can't figure out one. I have also seen couple of similar older SO posts but none I can find to give something that is more efficient than O(n2). Is this somehow an NP Hard problem that we can never have something better or if not what approach could be take. Please note I came across a post which claims about an efficient divide and conquer algorithm but couldn't make any head or tail out of it.
Any help in this regard?
Note*** I am tagging this Python because I understand Python better than maybe Matlab or Ruby. C/C++/Java is also fine as I am somewhat proficient in these too :-)