Spoiler alert: this is related to Problem 14 from Project Euler.
The following code takes around 15s to run. I have a non-recursive Java solution that runs in 1s. I think I should be able to get this code much closer to that.
import Data.List
collatz a 1 = a
collatz a x
| even x = collatz (a + 1) (x `div` 2)
| otherwise = collatz (a + 1) (3 * x + 1)
main = do
print ((foldl1' max) . map (collatz 1) $ [1..1000000])
I have profiled with +RHS -p
and noticed that the allocated memory is large, and grows as the input grows. For n = 100,000
1gb is allocated(!), for n = 1,000,000
13gb(!!) is allocated.
Then again, -sstderr
shows that although lots of bytes were allocated, total memory use was 1mb, and productivity was 95%+, so maybe 13gb is red-herring.
I can think of a few possibilities:
Something isn't as strict as it needs to be. I've already discovered
foldl1'
, but maybe I need to do more? Is it possible to markcollatz
as strict (does that even make sense?collatz
isn't tail-call optimizing. I think it should be but don't know a way to confirm.The compiler isn't doing some optimizations I think it should - for instance only two results of
collatz
need to be in memory at any one time (max and current)
Any suggestions?
This is pretty much a duplicate of Why is this Haskell expression so slow?, though I will note that the fast Java solution does not have to perform any memoization. Are there any ways to speed this up without having to resort to it?
For reference, here is my profiling output:
Wed Dec 28 09:33 2011 Time and Allocation Profiling Report (Final)
scratch +RTS -p -hc -RTS
total time = 5.12 secs (256 ticks @ 20 ms)
total alloc = 13,229,705,716 bytes (excludes profiling overheads)
COST CENTRE MODULE %time %alloc
collatz Main 99.6 99.4
individual inherited
COST CENTRE MODULE no. entries %time %alloc %time %alloc
MAIN MAIN 1 0 0.0 0.0 100.0 100.0
CAF Main 208 10 0.0 0.0 100.0 100.0
collatz Main 215 1 0.0 0.0 0.0 0.0
main Main 214 1 0.4 0.6 100.0 100.0
collatz Main 216 0 99.6 99.4 99.6 99.4
CAF GHC.IO.Handle.FD 145 2 0.0 0.0 0.0 0.0
CAF System.Posix.Internals 144 1 0.0 0.0 0.0 0.0
CAF GHC.Conc 128 1 0.0 0.0 0.0 0.0
CAF GHC.IO.Handle.Internals 119 1 0.0 0.0 0.0 0.0
CAF GHC.IO.Encoding.Iconv 113 5 0.0 0.0 0.0 0.0
And -sstderr:
./scratch +RTS -sstderr
525
21,085,474,908 bytes allocated in the heap
87,799,504 bytes copied during GC
9,420 bytes maximum residency (1 sample(s))
12,824 bytes maximum slop
1 MB total memory in use (0 MB lost due to fragmentation)
Generation 0: 40219 collections, 0 parallel, 0.40s, 0.51s elapsed
Generation 1: 1 collections, 0 parallel, 0.00s, 0.00s elapsed
INIT time 0.00s ( 0.00s elapsed)
MUT time 35.38s ( 36.37s elapsed)
GC time 0.40s ( 0.51s elapsed)
RP time 0.00s ( 0.00s elapsed) PROF time 0.00s ( 0.00s elapsed)
EXIT time 0.00s ( 0.00s elapsed)
Total time 35.79s ( 36.88s elapsed) %GC time 1.1% (1.4% elapsed) Alloc rate 595,897,095 bytes per MUT second
Productivity 98.9% of total user, 95.9% of total elapsed
And Java solution (not mine, taken from Project Euler forums with memoization removed):
public class Collatz {
public int getChainLength( int n )
{
long num = n;
int count = 1;
while( num > 1 )
{
num = ( num%2 == 0 ) ? num >> 1 : 3*num+1;
count++;
}
return count;
}
public static void main(String[] args) {
Collatz obj = new Collatz();
long tic = System.currentTimeMillis();
int max = 0, len = 0, index = 0;
for( int i = 3; i < 1000000; i++ )
{
len = obj.getChainLength(i);
if( len > max )
{
max = len;
index = i;
}
}
long toc = System.currentTimeMillis();
System.out.println(toc-tic);
System.out.println( "Index: " + index + ", length = " + max );
}
}