I have a some experimental data (for y, x, t_exp, m_exp), and want to find the "optimal" model parameters (A, B, C, D, E) for this data using the constrained multivariate BFGS method. Parameter E must be greater than 0, the others are unconstrained.
def func(x, A, B, C, D, E, *args):
return A * (x ** E) * numpy.cos(t_exp) * (1 - numpy.exp((-2 * B * x) / numpy.cos(t_exp))) + numpy.exp((-2 * B * x) / numpy.cos(t_exp)) * C + (D * m_exp)
initial_values = numpy.array([-10, 2, -20, 0.3, 0.25])
mybounds = [(None,None), (None,None), (None,None), (None,None), (0, None)]
x,f,d = scipy.optimize.fmin_l_bfgs_b(func, x0=initial_values, args=(m_exp, t_exp), bounds=mybounds)
A few questions:
- Should my model formulation
func
include my independent variablex
or should it be provided from the experimental datax_exp
as part of*args
? - When I run the above code, I get an error
func() takes at least 6 arguments (3 given)
, which I assume are x, and my two *args... How should I definefunc
?
EDIT: Thanks to @zephyr's answer, I now understand that the goal is to minimize the sum of squared residuals, not the actual function. I got to the following working code:
def func(params, *args):
l_exp = args[0]
s_exp = args[1]
m_exp = args[2]
t_exp = args[3]
A, B, C, D, E = params
s_model = A * (l_exp ** E) * numpy.cos(t_exp) * (1 - numpy.exp((-2 * B * l_exp) / numpy.cos(t_exp))) + numpy.exp((-2 * B * l_exp) / numpy.cos(theta_exp)) * C + (D * m_exp)
residual = s_exp - s_model
return numpy.sum(residual ** 2)
initial_values = numpy.array([-10, 2, -20, 0.3, 0.25])
mybounds = [(None,None), (None,None), (None,None), (None,None), (0,None)]
x, f, d = scipy.optimize.fmin_l_bfgs_b(func, x0=initial_values, args=(l_exp, s_exp, m_exp, t_exp), bounds=mybounds, approx_grad=True)
I am not sure that the bounds are working correctly. When I specify (0, None) for E, I get a run flag 2, abnormal termination. If I set it to (1e-6, None), it runs fine, but selects 1e-6 as E. Am I specifying the bounds correctly?