Code for inverse of matrix using Elementary row transformation in c++
#include<iostream>
#include<stdio.h>
#include<conio.h>
using
namespace std;
float a[4][4];float b[4][4]={{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}};
int no = 4;
int check(int k) {
float cont = 0, cont2 = 0;
for (int i = k; i < no; i++) {
if (a[i][k] == 1) {
for (int j = 0; j < no; j++) {
cont = a[i][j];
cont2 = b[i][j];
a[i][j] = a[k][j];
b[i][j] = b[k][j];
a[k][j] = cont;
b[k][j] = cont2;
}
} else if (a[i][k] == 0) {
for (int j = 0; j < no; j++) {
cont = a[i][j];
cont2 = b[i][j];
a[i][j] = a[no - 1][j];
b[i][j] = b[no - 1][j];
a[no - 1][j] = cont;
b[no - 1][j] = cont2;
}
}
}
return 0;
}
int divi(int k) {
float particular = a[k][k];
for (int i = 0; i < no; i++) {
a[k][i] = a[k][i] / particular;
b[k][i] = b[k][i] / particular;
if (a[k][i] == (-0)) {
a[k][i] = 0;
}
if (b[k][i] == (-0)) {
b[k][i] = 0;
}
}
return 0;
}
int sub1(int k) {
float particular;
for (int j = k + 1; j < no; j++) {
particular = a[j][k];
for (int i = 0; i < no; i++) {
a[j][i] = a[j][i] - (particular * a[k][i]);
b[j][i] = b[j][i] - (particular * b[k][i]);
if (a[j][i] == (-0)) {
a[j][i] = 0;
}
if (b[j][i] == (-0)) {
b[j][i] = 0;
}
}
}
return 0;
}
int sub2(int k) {
float particular;
for (int j = k - 1; j >= 0; j--) {
particular = a[j][k];
for (int i = no - 1; i >= 0; i--) {
a[j][i] = a[j][i] - (particular * a[k][i]);
b[j][i] = b[j][i] - (particular * b[k][i]);
if (a[j][i] == (-0)) {
a[j][i] = 0;
}
if (b[j][i] == (-0)) {
b[j][i] = 0;
}
}
}
return 0;
}
int disp(){
cout<<endl;
for(int x=0;x<no;x++){
for(int y=0;y<no;y++){
if(a[x][y]==(-0)){a[x][y]=0;}
if(b[x][y]==(-0)){b[x][y]=0;}
printf("%0.1f|||%0.1f ",a[x][y],b[x][y]);
}
cout<<endl;}
}
int main()
{
for(int i=0;i<no;i++){
for(int j=0;j<no;j++){cout<<"Enter a["<<i<<"]["<<j<<"]";cin>>a[i}[j];}
}
for(int i=0;i<no;i++){
for(int j=0;j<no;j++){cout<<a[i][j]<<" ";}
cout<<endl;
}
for(int i=0;i<no;i++){
check(i);
disp();
divi(i);
disp();
sub1(i);
disp();
}
for(int i=no-1;i>=0;i--){
sub2(i);
disp();
cout<<endl;
}
getch();
getch();
getch();
return 0;}
}