I have a, very long, integer. The integer is represented by a array of unsigned chars.
Example: the integer 1234 with base 10 is represented in the array as [4,3,2,1], [2,2,3,2] (base 8) and [2,13,4] (base 16)
Now I want to convert my integer with base n to another integer with base m. In my persued for a answer I came accross Wallar's algorithm, originally from here.
from math import *
def baseExpansion(n,c,b):
j = 0
base10 = sum([pow(c,len(n)-k-1)*n[k] for k in range(0,len(n))])
while floor(base10/pow(b,j)) != 0: j = j+1
return [floor(base10/pow(b,j-p)) % b for p in range(1,j+1)]
At first I thought this was my answer but unfortunately it is not. The problem I have is that the algorithm computes the sum. In my case this is a problem because the variable base10
is of type unsigned integer of 32 bits. Therefore when my integer, represented as a array, has more then 10 digits it can not convert the number anymore. Anyone has a solution?