I have a CUDA program that calls the kernel repeatedly within a for loop. The code computes all rows of a matrix by using the values computed in the previous one until the entire matrix is done. This is basically a dynamic programming algorithm. The code below fills the (i,j) entry of many separate matrices in parallel with the kernel.
for(i = 1; i <=xdim; i++){
for(j = 1; j <= ydim; j++){
start3time = clock();
assign5<<<BLOCKS, THREADS>>>(Z, i, j, x, y, z)
end3time = clock();
diff = static_cast<double>(end3time-start3time)/(CLOCKS_PER_SEC / 1000);
printf("Time for i=%d j=%d is %f\n", i, j, diff);
}
}
The kernel assign5 is straightforward
__global__ void assign5(float* Z, int i, int j, int x, int y, int z) {
int id = threadIdx.x + blockIdx.x * blockDim.x;
char ch = database[j + id];
Z[i+id] = (Z[x+id] + Z[y+id] + Z[z+id])*dev_matrix[i][index[ch - 'A']];
}
}
My problem is that when I run this program the time for each i and j is 0 most of the time but sometimes it is 10 milliseconds. So the output looks like
Time for i=0 j=0 is 0
Time for i=0 j=1 is 0
.
.
Time for i=15 j=21 is 10
Time for i=15 j=22 is 0
.
I don't understand why this is happening. I don't see a thread race condition. If I add
if(i % 20 == 0) cudaThreadSynchronize();
right after the first loop then the Time for i and j is mostly 0. But then the time for sync is sometimes 10 or even 20. It seems like CUDA is performing many operations at low cost and then charges a lot for later ones. Any help would be appreciated.