I'm sorry if this is too simple for some people, but I still don't get the trick with python's multiprocessing. I've read
http://docs.python.org/dev/library/multiprocessing
http://pymotw.com/2/multiprocessing/basics.html
and many other tutorials and examples that google gives me... many of them from here too.
Well, my situation is that I have to compute many numpy matrices and I need to store them in a single numpy matrix afterwards. Let's say I want to use 20 cores (or that I can use 20 cores) but I haven't managed to successfully use the pool resource since it keeps the processes alive till the pool "dies". So I thought on doing something like this:
from multiprocessing import Process, Queue
import numpy as np
def f(q,i):
q.put( np.zeros( (4,4) ) )
if __name__ == '__main__':
q = Queue()
for i in range(30):
p = Process(target=f, args=(q,))
p.start()
p.join()
result = q.get()
while q.empty() == False:
result += q.get()
print result
but then it looks like the processes don't run in parallel but they run sequentially (please correct me if I'm wrong) and I don't know if they die after they do their computation (so for more than 20 processes the ones that did their part leave the core free for another process). Plus, for a very large number (let's say 100.000), storing all those matrices (which may be really big too) in a queue will use a lot of memory, rendering the code useless since the idea is to put every result on each iteration in the final result, like using a lock (and its acquire() and release() methods), but if this code isn't for parallel processing, the lock is useless too...
I hope somebody may help me.
Thanks in advance!