Temporaries do have storage. They are allocated on the stack of the caller (note: might be subject of calling convention, but I think they all use caller's stack):
caller()
{
callee1( Tmp() );
callee2( Tmp() );
}
Compiler will allocate space for the result Tmp()
on stack of the caller
. You can take address of this memory location - it'll be some address on stack of caller
. What compiler does not guarantee is that it will preserve values at this stack address after callee
returns. For example, compiler can place there another temporary etc.
EDIT: I believe, it's disallowed to eliminate code like this :
T bar();
T * ptr = &bar();
because it will very likely lead to problems.
EDIT: here is a little test:
#include <iostream>
typedef long long int T64;
T64 ** foo( T64 * fA )
{
std::cout << "Address of tmp inside callee : " << &fA << std::endl;
return ( &fA );
}
int main( void )
{
T64 lA = -1;
T64 lB = -2;
T64 lC = -3;
T64 lD = -4;
T64 ** ptr_tmp = foo( &lA );
std::cout << "**ptr_tmp = *(*ptr_tmp ) = lA\t\t\t\t**" << ptr_tmp << " = *(" << *ptr_tmp << ") = " << **ptr_tmp << " = " << lA << std::endl << std::endl;
foo( &lB );
std::cout << "**ptr_tmp = *(*ptr_tmp ) = lB (compiler override)\t**" << ptr_tmp << " = *(" << *ptr_tmp << ") = " << **ptr_tmp << " = " << lB << std::endl
<< std::endl;
*ptr_tmp = &lC;
std::cout << "Manual override" << std::endl << "**ptr_tmp = *(*ptr_tmp ) = lC (manual override)\t\t**" << ptr_tmp << " = *(" << *ptr_tmp << ") = " << **ptr_tmp
<< " = " << lC << std::endl << std::endl;
*ptr_tmp = &lD;
std::cout << "Another attempt to manually override" << std::endl;
std::cout << "**ptr_tmp = *(*ptr_tmp ) = lD (manual override)\t\t**" << ptr_tmp << " = *(" << *ptr_tmp << ") = " << **ptr_tmp << " = " << lD << std::endl
<< std::endl;
return ( 0 );
}
Program output GCC:
Address of tmp inside callee : 0xbfe172f0
**ptr_tmp = *(*ptr_tmp ) = lA **0xbfe172f0 = *(0xbfe17328) = -1 = -1
Address of tmp inside callee : 0xbfe172f0
**ptr_tmp = *(*ptr_tmp ) = lB (compiler override) **0xbfe172f0 = *(0xbfe17320) = -2 = -2
Manual override
**ptr_tmp = *(*ptr_tmp ) = lC (manual override) **0xbfe172f0 = *(0xbfe17318) = -3 = -3
Another attempt to manually override
**ptr_tmp = *(*ptr_tmp ) = lD (manual override) **0xbfe172f0 = *(0x804a3a0) = -5221865215862754004 = -4
Program output VC++:
Address of tmp inside callee : 00000000001EFC10
**ptr_tmp = *(*ptr_tmp ) = lA **00000000001EFC10 = *(000000013F42CB10) = -1 = -1
Address of tmp inside callee : 00000000001EFC10
**ptr_tmp = *(*ptr_tmp ) = lB (compiler override) **00000000001EFC10 = *(000000013F42CB10) = -2 = -2
Manual override
**ptr_tmp = *(*ptr_tmp ) = lC (manual override) **00000000001EFC10 = *(000000013F42CB10) = -3 = -3
Another attempt to manually override
**ptr_tmp = *(*ptr_tmp ) = lD (manual override) **00000000001EFC10 = *(000000013F42CB10) = 5356268064 = -4
Notice, both GCC and VC++ reserve on the stack of main
hidden local variable(s) for temporaries and MIGHT silently reuse them. Everything goes normal, until last manual override: after last manual override we have additional separate call to std::cout
. It uses stack space to where we just wrote something, and as a result we get garbage.
Bottom line: both GCC and VC++ allocate space for temporaries on stack of caller. They might have different strategies on how much space to allocate, how to reuse this space (it might depend on optimizations as well). They both might reuse this space at their discretion and, therefore, it is not safe to take address of a temporary, since we might try to access through this address the value we assume it still has (say, write something there directly and then try to retrieve it), while compiler might have reused it already and overwrote our value.