...
indicates varargs
in Java.
The [vararg]
attribute specifies that the method takes a variable number of parameters. To accomplish this, the last parameter must be a safe array of VARIANT type that contains all the remaining parameters :
[vararg [, optional-attributes]] return-type function-name(
[optional-param-attributes] param-list,
SAFEARRAY(VARIANT) last-param-name);
The varargs syntax basically lets you specify that there are possible parameters, right? They can be there, or cannot be there. That's the purpose of the three dots. When you call the method, you can call it with or without those parameters. This was done to avoid having to pass arrays to the methods.
Have a look at this:
See When do you use varargs in Java?
final public class Main
{
private void show(int []a)
{
for(int i=0;i<a.length;i++)
{
System.out.print(a[i]+"\t");
}
}
private void show(Object...a)
{
for(int i=0;i<a.length;i++)
{
System.out.print(a[i]+"\t");
}
System.out.println("\nvarargs called");
}
public static void main(String... args) //See also here.
{
int[]temp=new int[]{1,2,3,4};
Main main=new Main();
main.show(temp);
main.show(); //<-- This is possible.
}
}
It's for this reason, varargs
is basically not recommended in overloading of methods.
System.out.printf();
is an example of varargs
and defined as follows.
public PrintStream printf(String format, Object ... args)
{
return format(format, args);
}
format - A format string as described in Format string syntax
args - Arguments referenced by the format specifiers in the format string. If there are more arguments than format specifiers, the extra arguments are ignored. The number of arguments is variable and may be zero. The maximum number of arguments is limited by the maximum dimension of a Java array as defined by the Java Virtual Machine Specification. The behaviour on a null argument depends on the conversion.