How do rewards in those two RL techniques work? I mean, they both improve the policy and the evaluation of it, but not the rewards. How do I need to guess them from the beginning?
-
1possible duplicate of [Reinforcement learning: Differences between QLearning and SarsaTD?](http://stackoverflow.com/questions/6848828/reinforcement-learning-differences-between-qlearning-and-sarsatd) – Don Reba Jan 19 '12 at 02:02
2 Answers
You don't need guess the rewards. Reward is a feedback from the enviroment and rewards are parameters of the enviroment. Algorithm works in condition that agent can observe only feedback, state space and action space.
The key idea of Q-learning and TD is asynchronous stochastic approximation where we approximate Bellman operator's fixed point using noisy evaluations of longterm reward expectation.
For example, if we want to estimate expectation Gaussian distribution then we can sample and average it.
Reinforcement Learning is for problems where the AI agent has no information about the world it is operating in. So Reinforcement Learning algos not only give you a policy/ optimal action at each state but also navigate in a completely foreign environment( with no knoledge about what action will result in which result state) and learns the parameters of this new environment. These are model-based Reinforcement Learning Algorithm
Now Q Learning and Temporal Difference Learning are model-free reinforcement Learning algorithms. Meaning, the AI agent does the same things as in model-based Algo but it does not have to learn the model( things like transition probabilities) of the world it is operating in. Through many iterations it comes up with a mapping of each state to the optimal action to be performed in that state.
Now coming to your question, you do not have to guess the rewards at different states. Initially when the agent is new to the environment, it just chooses a random action to be performed from the state it is in and gives it to the simulator. The simulator, based on the transition functions, returns the result state of that state action pair and also returns the reward for being in that state.
The simulator is analogous to Nature in the real world. For example you find something unfamiliar in the world, you perform some action, like touching it, if the thing turns out to be a hot object Nature gives a reward in the form of pain, so that the next time you know what happens when you try that action. While programming this it is important to note that the working of the simulator is not visible to the AI agent that is trying to learn the environment.
Now depending on this reward that the agent senses, it backs up it's Q-value( in the case of Q-Learning) or utility value( in the case of TD-Learning). Over many iterations these Q-values converge and you are able to choose an optimal action for every state depending on the Q-value of the state-action pairs.

- 52
- 1
- 7